BoxCoxTrans(y, ...)
expoTrans(y, ...)## S3 method for class 'default':
BoxCoxTrans(y, x = rep(1, length(y)),
fudge = 0.2, numUnique = 3, na.rm = FALSE, ...)
## S3 method for class 'default':
expoTrans(y, na.rm = TRUE, init = 0,
lim = c(-4, 4), method = "Brent",
numUnique = 3, ...)
## S3 method for class 'BoxCoxTrans':
predict(object, newdata, ...)
## S3 method for class 'expoTrans':
predict(object, newdata, ...)
BoxCoxTrans
, the data must be strictly positive.y
have to estimate the transformation?NA
values should be stripped from y
and x
before the computation proceeds.optim
.BoxCoxTrans
: options to pass to boxcox
. plotit
should not be passed through. For predict.BoxCoxTrans
, additional arguments are ignored.BoxCoxTrans
or expoTrans
.BoxCoxTrans
or expoTrans
with elementsfudge
summary(y)
max(y)/min(y)
BoxCoxTrans
also returns:fudge
predict
functions returns numeric vectors of transformed valuesBoxCoxTrans
function is basically a wrapper for the boxcox
function in the MASS library. It can be used to estimate the transformation and apply it to new data. expoTrans
estimates the exponential transformation of Manly (1976) but assumes a common mean for the data. The transformation parameter is estimated by directly maximizing the likelihood.
If any(y <= 0)<="" code=""> or if
length(unique(y)) < numUnique
, lambda is not estimated and no transformation is applied.=>
Manly, B. L. (1976) Exponential data transformations. The Statistician, 25, 37 - 42.
boxcox
, preProcess
, optim
data(BloodBrain)
ratio <- exp(logBBB)
bc <- BoxCoxTrans(ratio)
bc
predict(bc, ratio[1:5])
ratio[5] <- NA
bc2 <- BoxCoxTrans(ratio, bbbDescr$tpsa, na.rm = TRUE)
bc2
manly <- expoTrans(ratio)
manly
Run the code above in your browser using DataLab