## S3 method for class 'default':
avNNet(x, y, repeats = 5, bag = FALSE, allowParallel = TRUE, ...)
## S3 method for class 'formula':
avNNet(formula, data, weights, ...,
repeats = 5, bag = FALSE, allowParallel = TRUE,
subset, na.action, contrasts = NULL)## S3 method for class 'avNNet':
predict(object, newdata, type = c("raw", "class", "prob"), ...)
class ~ x1 + x2 + ...
x
values for examples.formula
are
preferentially to be taken.NA
s are found.
The default action is for the procedure to fail. An alternative is
na.omit
, which leads to rejection of cases with missing values on
any required variable. (NOTE: IavNNet
as returned by avNNet
.raw
for the raw outputs, code
for the predicted class or prob
for the class probabilities.nnet
avNNet
, an object of "avNNet"
or "avNNet.formula"
. Items of interest in the output are:nnet
NULL
If a parallel backend is registered, the
nnet
, preProcess
data(BloodBrain)
modelFit <- avNNet(bbbDescr, logBBB, size = 5, linout = TRUE, trace = FALSE)
modelFit
predict(modelFit, bbbDescr)
Run the code above in your browser using DataLab