## Not run:
# data(BloodBrain)
#
# ## Use a GAM is the filter, then fit a random forest model
# RFwithGAM <- sbf(bbbDescr, logBBB,
# sbfControl = sbfControl(functions = rfSBF,
# verbose = FALSE,
# method = "cv"))
# RFwithGAM
#
# predict(RFwithGAM, bbbDescr[1:10,])
#
# ## classification example with parallel processing
#
# ## library(doMC)
#
# ## Note: if the underlying model also uses foreach, the
# ## number of cores specified above will double (along with
# ## the memory requirements)
# ## registerDoMC(cores = 2)
#
# data(mdrr)
# mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
# mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
#
# set.seed(1)
# filteredNB <- sbf(mdrrDescr, mdrrClass,
# sbfControl = sbfControl(functions = nbSBF,
# verbose = FALSE,
# method = "repeatedcv",
# repeats = 5))
# confusionMatrix(filteredNB)
# ## End(Not run)
Run the code above in your browser using DataLab