Learn R Programming

⚠️There's a newer version (3.10.2) of this package.Take me there.

See the NEWS file for recent updates, and below for quick start!

ctsem allows for easy specification and fitting of a range of continuous and discrete time dynamic models, including multiple indicators (dynamic factor analysis), multiple, potentially higher order processes, and time dependent (varying within subject) and time independent (not varying within subject) covariates. Classic longitudinal models like latent growth curves and latent change score models are also possible. Version 1 of ctsem provided SEM based functionality by linking to the OpenMx software, allowing mixed effects models (random means but fixed regression and variance parameters) for multiple subjects. For version 2 of the R package ctsem, we include a hierarchical specification and fitting routine that uses the Stan probabilistic programming language, via the rstan package in R. This allows for all parameters of the dynamic model to individually vary, using an estimated population mean and variance, and any time independent covariate effects, as a prior. Version 3 allows for state dependencies in the parameter specification (i.e. time varying parameters).

The current manual is at https://cran.r-project.org/package=ctsem/vignettes/hierarchicalmanual.pdf. The original ctsem is documented in a JSS publication (Driver, Voelkle, Oud, 2017), and in R vignette form at https://cran.r-project.org/package=ctsemOMX/vignettes/ctsem.pdf, however these OpenMx based functions have been split off into a sub package, ctsemOMX. For most use cases the newer formulation (with Kalman filtering coded in Stan) is faster, more robust, and more flexible, and both default to maximum likelihood. For cases with many subjects, few time points, and no individual differences in timing, ctsemOMX may be faster.

For questions (or to see past answers) please use https://github.com/cdriveraus/ctsem/discussions

For some tutorials and another quick start, see . The very quick start is below.

To cite ctsem please use the citation(“ctsem”) command in R.

To install the github version, first install rstan and Rtools, then from a fresh R session:

remotes::install_github('cdriveraus/ctsem', INSTALL_opts = "--no-multiarch", dependencies = c("Depends", "Imports"))

Or just use the CRAN version, but rstan compiler setup is needed separately for some models:

install.packages('ctsem')

Troubleshooting Rstan / Rtools install for Windows:

Ensure recent version of R and Rtools is installed. If the installctsem.R code has never been run before, be sure to run that (see above).

Place this line in ~/.R/makevars.win , and if there are other lines, delete them:

CXX17FLAGS += -mtune=native -Wno-ignored-attributes -Wno-deprecated-declarations

For compile issues, check if you can use rstan, check forum posts on

In case of compile errors like g++ not found, ensure the devtools package is installed:

install.packages('devtools')

Quick start – univariate panel data with covariate effects on parameters

#’ The basic long data structure. Diet, (our covariate) is a categorical variable so needs dummy / ‘one hot’ encoding.

head(ChickWeight) 

#’ Setup dummy coding

library(data.table)
library(mltools)
chickdata <- one_hot(as.data.table(ChickWeight),cols = 'Diet')

#’ Scaling of continuous variables makes for easier estimation and more sensible default priors (if used). Time intervals can also benefit

chickdata$weight <- scale(chickdata$weight) 
head(chickdata) #now we have the four diet categories

#’ Setup continuous time model – in this case we are estimating a regular first order autoregressive

library(ctsem)

m <- ctModel(
  LAMBDA=diag(1), #Factor loading matrix of latent processes on measurements, fixed to 1
  type = 'stanct', #Could specify 'standt' here for discrete time.
  tipredDefault = FALSE, #limit covariate effects on parameters to those explicitly specified
  manifestNames='weight', #Observed measurements of the latent processes
  latentNames='Lweight', #Names here simply make parameters and plots more interpretable
  TIpredNames = paste0('Diet_',2:4), #Covariates, in this case one category needs to be baseline...
  DRIFT='a11 | param', #normally self feedback (diagonal drift terms) are restricted to negative
  MANIFESTMEANS=0, #For identification CINT is normally zero with this freely estimated
  CINT='cint ||||Diet_2,Diet_3,Diet_4', #diet covariates specified in 5th 'slot' (four '|' separators)
  time='Time',
  id='Chick')

#’ View model in pdf/ latex form

ctModelLatex(m)

#’ Fit model to data – here using priors because Hessian problems are reported otherwise

f <- ctStanFit(chickdata,m,priors=TRUE) 

#’ Summarise fit, view covariate effects – Diets 3 and 4 seem most obviously successful

s=summary(f)

print(s$tipreds )

#’ Predictions conditional on all earlier data

ctKalman(f,plot=TRUE,subjects=2:4,kalmanvec=c('yprior','ysmooth')) 

#’ Predictions conditional only on covariates, showing 1 chick from each diet

ctKalman(f,plot=T, 
  subjects=as.numeric(chickdata$Chick[!duplicated(ChickWeight$Diet)]),
  removeObs = T,polygonalpha=0)

#’ Plot temporal regression coefficients conditional on time interval – increases in this case!

ctStanDiscretePars(f,plot=T) 

#’ Other useful functions:

#’ Compare two fits: ctChisqTest()

#’ Fit and summarise / plot a list of models: ctFitMultiModel()

#’ Add samples to fit to increase estimate precision: ctAddSamples()

#’ Return dynamic system parameters in matrix forms: ctStanContinuousPars()

#’ Compute cross validation statistics: ctLOO()

#’ Plot time independent predictor (covariate effects on parameters): ctStanTIpredEffects()

#’ Generate data from a specified model of fixed parameters: ctGenerate()

#’ Generate data from a specified model of fixed and free parameters / priors: ctStanGenerate()

#’ Generate data from a fitted model: ctStanGenerateFromFit()

#’ Get samples from the fitted object: ctExtract()

#’ In samples, pop_DRIFT refers to the population drift matrix, subj_DRIFT refers to the subject matrix. Subject matrices only computed for max likelihood / posterior mode by default, and found in the $stanfit$transformedparsfull object.

Copy Link

Version

Install

install.packages('ctsem')

Monthly Downloads

899

Version

3.8.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Charles Driver

Last Published

September 5th, 2023

Functions in ctsem (3.8.1)

ctFit

ctFit function placeholder
ctPlotArray

Plots three dimensional y values for quantile plots
ctModelHigherOrder

Raise the order of a ctsem model object of type 'omx'.
ctLongToWide

ctLongToWide Restructures time series / panel data from long format to wide format for ctsem analysis
ctIndplot

ctIndplot
ctIntervalise

Converts absolute times to intervals for wide format ctsem panel data
ctModelLatex

Generate and optionally compile latex equation of subject level ctsem model.
ctPoly

Plots uncertainty bands with shading
ctExample1TIpred

ctExample1TIpred
ctModel

Define a ctsem model
ctStanParnames

ctStanParnames
ctStanModel

Convert a frequentist (omx) ctsem model specification to Bayesian (Stan).
ctStanDiscreteParsPlot

ctStanDiscreteParsPlot
ctStanFit

ctStanFit
ctStanGenerateFromFit

Add a $generated object to ctstanfit object, with random data generated from posterior of ctstanfit object
ctStanKalman

Get Kalman filter estimates from a ctStanFit object
ctStanGenerate

Generate data from a ctstanmodel object
ctStanFitUpdate

Update a ctStanFit object
ctKalman

ctKalman
ctStanContinuousPars

ctStanContinuousPars
ctLOO

K fold cross validation for ctStanFit objects
ctStanDiscretePars

ctStanDiscretePars
ctWideToLong

ctWideToLong Convert ctsem wide to long format
ctsem-package

ctsem
ctStanUpdModel

Update an already compiled and fit ctStanFit object
ctWideNames

ctWideNames sets default column names for wide ctsem datasets. Primarily intended for internal ctsem usage.
ctStanSubjectPars

Extract an array of subject specific parameters from a ctStanFit object.
ctStanTIpredeffects

Get time independent predictor effect estimates
longexample

longexample
plot.ctKalmanDF

Plots Kalman filter output from ctKalman.
plot.ctStanModel

Prior plotting
plot.ctStanFit

plot.ctStanFit
sdpcor2cov

sdcor2cov
stan_reinitsf

Quickly initialise stanfit object from model and data
ctStanPostPredict

Compares model implied density and values to observed, for a ctStanFit object.
ctStanPlotPost

ctStanPlotPost
stanWplot

Runs stan, and plots sampling information while sampling.
stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale
log1p_exp

log1p_exp
isdiag

Diagnostics for ctsem importance sampling
ctstantestfit

ctstantestfit
summary.ctStanFit

summary.ctStanFit
ctstantestdat

ctstantestdat
inv_logit

Inverse logit
datastructure

datastructure
stan_postcalc

Compute functions of matrices from samples of a stanfit object
stan_checkdivergences

Analyse divergences in a stanfit object
standatact_specificsubjects

Adjust standata from ctsem to only use specific subjects
stanoptimis

Optimize / importance sample a stan or ctStan model.
ctChisqTest

Chi Square test wrapper for ctStanFit objects.
ctCheckFit

Visual model fit diagnostics for ctsem fit objects.
ctAddSamples

Sample more values from an optimized ctstanfit object
AnomAuth

AnomAuth
ctDocs

Get documentation pdf for ctsem
Oscillating

Oscillating
ctDeintervalise

ctDeintervalise
ctDiscretiseData

Discretise long format continuous time (ctsem) data to specific timestep.
ctExample4

ctExample4
ctExample3

ctExample3
ctExample2

ctExample2
ctGenerate

ctGenerate
ctFitMultiModel

Fit and summarise a list of ctsem models
ctExample1

ctExample1
ctExample2level

ctExample2level
ctDensity

ctDensity
ctCollapse

ctCollapse Easily collapse an array margin using a specified function.
ctExtract

Extract samples from a ctStanFit object