Learn R Programming

See the NEWS file for recent updates, and below for quick start!

ctsem allows for easy specification and fitting of a range of continuous and discrete time dynamic models, including multiple indicators (dynamic factor analysis), multiple, potentially higher order processes, and time dependent (varying within subject) and time independent (not varying within subject) covariates. Classic longitudinal models like latent growth curves and latent change score models are also possible. Version 1 of ctsem provided SEM based functionality by linking to the OpenMx software, allowing mixed effects models (random means but fixed regression and variance parameters) for multiple subjects. For version 2 of the R package ctsem, we include a hierarchical specification and fitting routine that uses the Stan probabilistic programming language, via the rstan package in R. This allows for all parameters of the dynamic model to individually vary, using an estimated population mean and variance, and any time independent covariate effects, as a prior. Version 3 allows for state dependencies in the parameter specification (i.e. time varying parameters).

The current manual is at https://cran.r-project.org/package=ctsem/vignettes/hierarchicalmanual.pdf. The original ctsem is documented in a JSS publication (Driver, Voelkle, Oud, 2017), and in R vignette form at https://cran.r-project.org/package=ctsemOMX/vignettes/ctsem.pdf, however these OpenMx based functions have been split off into a sub package, ctsemOMX. For most use cases the newer formulation (with Kalman filtering coded in Stan) is faster, more robust, and more flexible, and both default to maximum likelihood. For cases with many subjects, few time points, and no individual differences in timing, ctsemOMX may be faster.

For questions (or to see past answers) please use https://github.com/cdriveraus/ctsem/discussions

For some tutorials and another quick start, see . The very quick start is below.

To cite ctsem please use the citation(“ctsem”) command in R.

To install the github version, first install rstan and Rtools, then from a fresh R session:

remotes::install_github('cdriveraus/ctsem', INSTALL_opts = "--no-multiarch", dependencies = c("Depends", "Imports"))

Or just use the CRAN version, but rstan compiler setup is needed separately for some models:

install.packages('ctsem')

Troubleshooting Rstan / Rtools install for Windows:

Ensure recent version of R and Rtools is installed. If the installctsem.R code has never been run before, be sure to run that (see above).

Place this line in ~/.R/makevars.win , and if there are other lines, delete them:

CXX17FLAGS += -mtune=native -Wno-ignored-attributes -Wno-deprecated-declarations

For compile issues, check if you can use rstan, check forum posts on

In case of compile errors like g++ not found, ensure the devtools package is installed:

install.packages('devtools')

Quick start – univariate panel data with covariate effects on parameters

#’ The basic long data structure. Diet, (our covariate) is a categorical variable so needs dummy / ‘one hot’ encoding.

head(ChickWeight) 

#’ Setup dummy coding

library(data.table)
library(mltools)
chickdata <- one_hot(as.data.table(ChickWeight),cols = 'Diet')

#’ Scaling of continuous variables makes for easier estimation and more sensible default priors (if used). Time intervals can also benefit

chickdata$weight <- scale(chickdata$weight) 
head(chickdata) #now we have the four diet categories

#’ Setup continuous time model – in this case we are estimating a regular first order autoregressive

library(ctsem)

m <- ctModel(
  LAMBDA=diag(1), #Factor loading matrix of latent processes on measurements, fixed to 1
  type = 'stanct', #Could specify 'standt' here for discrete time.
  tipredDefault = FALSE, #limit covariate effects on parameters to those explicitly specified
  manifestNames='weight', #Observed measurements of the latent processes
  latentNames='Lweight', #Names here simply make parameters and plots more interpretable
  TIpredNames = paste0('Diet_',2:4), #Covariates, in this case one category needs to be baseline...
  DRIFT='a11 | param', #normally self feedback (diagonal drift terms) are restricted to negative
  MANIFESTMEANS=0, #For identification CINT is normally zero with this freely estimated
  CINT='cint ||||Diet_2,Diet_3,Diet_4', #diet covariates specified in 5th 'slot' (four '|' separators)
  time='Time',
  id='Chick')

#’ View model in pdf/ latex form

ctModelLatex(m)

#’ Fit model to data – here using priors because Hessian problems are reported otherwise

f <- ctStanFit(chickdata,m,priors=TRUE) 

#’ Summarise fit, view covariate effects – Diets 3 and 4 seem most obviously successful

s=summary(f)

print(s$tipreds )

#’ Predictions conditional on all earlier data

ctKalman(f,plot=TRUE,subjects=2:4,kalmanvec=c('yprior','ysmooth')) 

#’ Predictions conditional only on covariates, showing 1 chick from each diet

ctKalman(f,plot=T, 
  subjects=as.numeric(chickdata$Chick[!duplicated(ChickWeight$Diet)]),
  removeObs = T,polygonalpha=0)

#’ Plot temporal regression coefficients conditional on time interval – increases in this case!

ctStanDiscretePars(f,plot=T) 

#’ Other useful functions:

#’ Compare two fits: ctChisqTest()

#’ Fit and summarise / plot a list of models: ctFitMultiModel()

#’ Add samples to fit to increase estimate precision: ctAddSamples()

#’ Return dynamic system parameters in matrix forms: ctStanContinuousPars()

#’ Compute cross validation statistics: ctLOO()

#’ Plot time independent predictor (covariate effects on parameters): ctStanTIpredEffects()

#’ Generate data from a specified model of fixed parameters: ctGenerate()

#’ Generate data from a specified model of fixed and free parameters / priors: ctStanGenerate()

#’ Generate data from a fitted model: ctStanGenerateFromFit()

#’ Get samples from the fitted object: ctExtract()

#’ In samples, pop_DRIFT refers to the population drift matrix, subj_DRIFT refers to the subject matrix. Subject matrices only computed for max likelihood / posterior mode by default, and found in the $stanfit$transformedparsfull object.

Copy Link

Version

Install

install.packages('ctsem')

Monthly Downloads

1,277

Version

3.10.2

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Charles Driver

Last Published

January 13th, 2025

Functions in ctsem (3.10.2)

ctFitCovCheck

ctCheckFit
ctFitMultiModel

Fit and summarise a list of ctsem models
ctGenerate

ctGenerate
ctDiscretiseData

Discretise long format continuous time (ctsem) data to specific timestep.
ctDocs

Get documentation pdf for ctsem
ctIndplot

ctIndplot
ctLOO

K fold cross validation for ctStanFit objects
ctLongToWide

ctLongToWide Restructures time series / panel data from long format to wide format for ctsem analysis
ctPredictTIP

ctPredictTIP
ctPostPredPlots

Create diagnostic plots to assess the goodness-of-fit for a ctsem model.
ctPostPredData

Create a data.table to compare data generated from a ctsem fit with the original data.
ctPoly

Plots uncertainty bands with shading
ctExample3

ctExample3
ctExample4

ctExample4
ctStanDiscreteParsPlot

ctStanDiscreteParsPlot
ctStanDiscretePars

ctStanDiscretePars
ctFit

ctFit function placeholder
ctModel

Define a ctsem model
ctIntervalise

Converts absolute times to intervals for wide format ctsem panel data
ctResiduals

Extract Standardized Residuals from a ctsem Fit
ctStanContinuousPars

ctStanContinuousPars
ctStanParnames

ctStanParnames
ctStanPlotPost

ctStanPlotPost
ctKalman

ctKalman
ctStanGenerate

Generate data from a ctstanmodel object
ctPlotArray

Plots three dimensional y values for quantile plots
ctStanModel

Convert a frequentist (omx) ctsem model specification to Bayesian (Stan).
ctModelLatex

Generate and optionally compile latex equation of subject level ctsem model.
ctStanUpdModel

Update an already compiled and fit ctStanFit object
ctStanKalman

Get Kalman filter estimates from a ctStanFit object
ctstantestdat

ctstantestdat
ctsem-package

ctsem
ctStanTIpredeffects

Get time independent predictor effect estimates
ctStanFit

ctStanFit
ctWideNames

ctWideNames sets default column names for wide ctsem datasets. Primarily intended for internal ctsem usage.
ctStanFitUpdate

Update a ctStanFit object
ctModelHigherOrder

Raise the order of a ctsem model object of type 'omx'.
plot.ctKalmanDF

Plots Kalman filter output from ctKalman.
plot.ctStanFit

plot.ctStanFit
ctStanPostPredict

Compares model implied density and values to observed, for a ctStanFit object.
inv_logit

Inverse logit
sdpcor2cov

sdcor2cov
ctstantestfit

ctstantestfit
plot.ctStanModel

Prior plotting
summary.ctStanFit

summary.ctStanFit
stan_reinitsf

Quickly initialise stanfit object from model and data
ctStanSubjectPars

Extract an array of subject specific parameters from a ctStanFit object.
ctStanGenerateFromFit

Add a $generated object to ctstanfit object, with random data generated from posterior of ctstanfit object
datastructure

datastructure
plotctACF

Plot an approximate continuous-time ACF object from ctACF
stanoptimis

Optimize / importance sample a stan or ctStan model.
stan_checkdivergences

Analyse divergences in a stanfit object
test_isclose

Tests if 2 values are close to each other
isdiag

Diagnostics for ctsem importance sampling
stanWplot

Runs stan, and plots sampling information while sampling.
ctWideToLong

ctWideToLong Convert ctsem wide to long format
stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale
log1p_exp

log1p_exp
standatact_specificsubjects

Adjust standata from ctsem to only use specific subjects
longexample

longexample
AnomAuth

AnomAuth
Oscillating

Oscillating
ctACF

Continuous Time Autocorrelation Function (ctACF)
ctACFresiduals

Calculate Continuous Time Autocorrelation Function (ACF) for Standardized Residuals of ctsem fit.
ctAddSamples

Sample more values from an optimized ctstanfit object
ctChisqTest

Chi Square test wrapper for ctStanFit objects.
ctDeintervalise

ctDeintervalise
ctCheckFit

Visual model fit diagnostics for ctsem fit objects.
ctExtract

Extract samples from a ctStanFit object
ctCollapse

ctCollapse Easily collapse an array margin using a specified function.
ctDensity

ctDensity
ctExample2

ctExample2
ctExample1

ctExample1
ctExample1TIpred

ctExample1TIpred
ctExample2level

ctExample2level