Learn R Programming

⚠️There's a newer version (1.3.0) of this package.Take me there.

dials

Overview

This package contains infrastructure to create and manage values of tuning parameters for the tidymodels packages. If you are looking for how to tune parameters in tidymodels, please look at the tune package and tidymodels.org.

The name reflects the idea that tuning predictive models can be like turning a set of dials on a complex machine under duress.

Installation

You can install the released version of dials from CRAN with:

install.packages("dials")

You can install the development version from Github with:

devtools::install_github("tidymodels/dials")

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('dials')

Monthly Downloads

30,765

Version

0.1.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

January 31st, 2022

Functions in dials (0.1.0)

adjust_deg_free

Parameters to adjust effective degrees of freedom
activation

Activation functions between network layers
bart-param

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
cost

Support vector machine parameters
all_neighbors

Parameter to determine which neighbors to use
Laplace

Laplace correction parameter
confidence_factor

Parameters for possible engine parameters for C5.0
class_weights

Parameters for class weights for imbalanced problems
conditional_min_criterion

Parameters for possible engine parameters for party models
Chicago

Chicago Ridership Data
learn_rate

Learning rate
num_breaks

Number of cut-points for binning
dropout

Neural network parameters
dist_power

Minkowski distance parameter
min_unique

Number of unique values for pre-processing
num_comp

Number of new features
mixture

Mixture of penalization terms
max_num_terms

Parameters for possible engine parameters for earth models
degree

Parameters for exponents
max_tokens

Maximum number of retained tokens
encode_unit

Class for converting parameter values back and forth to the unit range
dials-package

dials: Tools for working with tuning parameters
freq_cut

Near-zero variance parameters
grid_regular

Create grids of tuning parameters
finalize

Functions to finalize data-specific parameter ranges
num_knots

Number of knots (integer)
grid_max_entropy

Space-filling parameter grids
max_nodes

Parameters for possible engine parameters for randomForest
max_times

Word frequencies for removal
min_dist

Parameter for the effective minimum distance between embedded points
over_ratio

Parameters for class-imbalance sampling
extrapolation

Parameters for possible engine parameters for Cubist
trees

Parameter functions related to tree- and rule-based models.
parameters

Information on tuning parameters within an object
type_sum.param

Succinct summary of parameter objects
deg_free

Degrees of freedom (integer)
neighbors

Number of neighbors
new-param

Tools for creating new parameter objects
momentum

Gradient descent momentum parameter
range_validate

Tools for working with parameter ranges
smoothness

Kernel Smoothness
regularization_factor

Parameters for possible engine parameters for ranger
stop_iter

Early stopping parameter
value_validate

Tools for working with parameter values
vocabulary_size

Number of tokens in vocabulary
predictor_prop

Proportion of predictors
prior_slab_dispersion

Bayesian PCA parameters
survival_link

Survival Model Link Function
num_tokens

Parameter to determine number of tokens in ngram
weight_scheme

Term frequency weighting methods
window_size

Parameter for the moving window size
num_hash

Text hashing parameters
mtry

Number of randomly sampled predictors
rbf_sigma

Kernel parameters
parameters_constr

Construct a new parameter set object
select_features

Parameter to enable feature selection
penalty

Amount of regularization/penalization
shrinkage_correlation

Parameters for possible engine parameters for sda models
threshold

General thresholding parameter
pull_dials_object

Return a dials parameter object associated with parameters
reexports

Objects exported from other packages
prune_method

MARS pruning methods
regularization_method

Estimation methods for regularized models
token

Token types
summary_stat

Rolling summary statistic for moving windows
surv_dist

Parametric distributions for censored data
update.parameters

Update a single parameter in a parameter set
unknown

Placeholder for unknown parameter values
weight

Parameter for "double normalization" when creating token counts
weight_func

Kernel functions for distance weighting
scale_pos_weight

Parameters for possible engine parameters for xgboost