Learn R Programming

dials

Overview

This package contains infrastructure to create and manage values of tuning parameters for the tidymodels packages. If you are looking for how to tune parameters in tidymodels, please look at the tune package and tidymodels.org.

The name reflects the idea that tuning predictive models can be like turning a set of dials on a complex machine under duress.

Installation

You can install the released version of dials from CRAN with:

install.packages("dials")

You can install the development version from Github with:

# install.packages("pak")
pak::pak("tidymodels/dials")

Contributing

Please note that the dials project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('dials')

Monthly Downloads

30,765

Version

1.3.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

July 30th, 2024

Functions in dials (1.3.0)

freq_cut

Near-zero variance parameters
dials-package

dials: Tools for working with tuning parameters
deg_free

Degrees of freedom (integer)
dropout

Neural network parameters
degree

Parameters for exponents
finalize

Functions to finalize data-specific parameter ranges
grid_max_entropy

Max-entropy and latin hypercube grids
encode_unit

Class for converting parameter values back and forth to the unit range
max_num_terms

Parameters for possible engine parameters for earth models
dist_power

Minkowski distance parameter
num_leaves

Possible engine parameters for lightbgm
min_dist

Parameter for the effective minimum distance between embedded points
max_times

Word frequencies for removal
initial_umap

Initialization method for UMAP
learn_rate

Learning rate
max_tokens

Maximum number of retained tokens
min_unique

Number of unique values for pre-processing
grid_regular

Create grids of tuning parameters
mtry

Number of randomly sampled predictors
harmonic_frequency

Harmonic Frequency
grid_space_filling

Space-filling parameter grids
num_comp

Number of new features
neighbors

Number of neighbors
new-param

Tools for creating new parameter objects
num_breaks

Number of cut-points for binning
num_clusters

Number of Clusters
num_runs

Number of Computation Runs
mixture

Mixture of penalization terms
parameters_constr

Construct a new parameter set object
penalty

Amount of regularization/penalization
momentum

Gradient descent momentum parameter
max_nodes

Parameters for possible engine parameters for randomForest
prune_method

MARS pruning methods
range_validate

Tools for working with parameter ranges
num_knots

Number of knots (integer)
over_ratio

Parameters for class-imbalance sampling
parameters

Information on tuning parameters within an object
smoothness

Kernel Smoothness
stop_iter

Early stopping parameter
mtry_prop

Proportion of Randomly Selected Predictors
regularization_factor

Parameters for possible engine parameters for ranger
summary_stat

Rolling summary statistic for moving windows
surv_dist

Parametric distributions for censored data
predictor_prop

Proportion of predictors
reexports

Objects exported from other packages
prior_slab_dispersion

Bayesian PCA parameters
rbf_sigma

Kernel parameters
num_hash

Text hashing parameters
target_weight

Amount of supervision parameter
threshold

General thresholding parameter
survival_link

Survival Model Link Function
num_tokens

Parameter to determine number of tokens in ngram
unknown

Placeholder for unknown parameter values
update.parameters

Update a single parameter in a parameter set
shrinkage_correlation

Parameters for possible engine parameters for sda models
select_features

Parameter to enable feature selection
validation_set_prop

Proportion of data used for validation
type_sum.param

Succinct summary of parameter objects
trim_amount

Amount of Trimming
scheduler-param

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.
regularization_method

Estimation methods for regularized models
window_size

Parameter for the moving window size
scale_pos_weight

Parameters for possible engine parameters for xgboost
value_validate

Tools for working with parameter values
weight_func

Kernel functions for distance weighting
weight_scheme

Term frequency weighting methods
trees

Parameter functions related to tree- and rule-based models.
vocabulary_size

Number of tokens in vocabulary
weight

Parameter for "double normalization" when creating token counts
token

Token types
adjust_deg_free

Parameters to adjust effective degrees of freedom
bart-param

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
Laplace

Laplace correction parameter
all_neighbors

Parameter to determine which neighbors to use
class_weights

Parameters for class weights for imbalanced problems
conditional_min_criterion

Parameters for possible engine parameters for partykit models
cost

Support vector machine parameters
extrapolation

Parameters for possible engine parameters for Cubist
confidence_factor

Parameters for possible engine parameters for C5.0
activation

Activation functions between network layers