powered by
Plot eigenvalues (scree plot) or variances histogram.
# S4 method for MultivariateAnalysis screeplot( x, ..., eigenvalues = FALSE, cumulative = FALSE, labels = TRUE, limit = 10, col = "grey90", border = "grey10", col.cumulative = "red", lty.cumulative = "solid", lwd.cumulative = 2 )# S4 method for PCOA screeplot( x, ..., labels = FALSE, limit = NULL, col = "grey90", border = "grey10" )
# S4 method for PCOA screeplot( x, ..., labels = FALSE, limit = NULL, col = "grey90", border = "grey10" )
screeplot() is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.
screeplot()
x
A CA, MCA or PCA object.
CA
MCA
PCA
Extra parameters to be passed to graphics::barplot().
graphics::barplot()
A logical scalar: should the eigenvalues be plotted instead of variance/inertia?
logical
A logical scalar: should the cumulative percentages of variance be plotted?
A logical scalar: should text labels be drawn on top of bars?
An integer specifying the number of top elements to be displayed.
integer
A character string specifying the bars infilling and border colors.
character
A specification for the line color.
A specification for the line type.
A specification for the line width.
N. Frerebeau
Other plot methods: biplot(), plot(), viz_contributions(), viz_individuals(), viz_variables(), viz_wrap, wrap
biplot()
plot()
viz_contributions()
viz_individuals()
viz_variables()
viz_wrap
wrap
## Load data data("iris") ## Compute principal components analysis X <- pca(iris, scale = TRUE) ## Screeplot screeplot(X) screeplot(X, cumulative = TRUE)
Run the code above in your browser using DataLab