Mathematical and statistical functions for the Noncentral Beta distribution, which is commonly used as the prior in Bayesian modelling.
Returns an R6 object inheriting from class SDistribution.
BetaNoncentral$new(shape1 = 1, shape2 = 1, location = 0, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
shape1, shape2 |
numeric | positive shape parameter. |
location |
numeric | location (ncp in rstats). |
decorators
The Noncentral Beta distribution is parameterised with shape1
, shape2
as positive numerics, location
as non-negative numeric.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
mode(which = "all") |
mode |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
The Noncentral Beta distribution parameterised with two shape parameters, \(\alpha, \beta\), and location, \(\lambda\), is defined by the pdf, $$f(x) = exp(-\lambda/2) \sum_{r=0}^\infty ((\lambda/2)^r/r!) (x^{\alpha+r-1}(1-x)^{\beta-1})/B(\alpha+r, \beta)$$ for \(\alpha, \beta > 0, \lambda \ge 0\), where \(B\) is the Beta function.
The distribution is supported on \([0, 1]\).
mean
, variance
, skewness
, kurtosis
, entropy
, mode
, mgf
and cf
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. CoreStatistics
for numerical results.
# NOT RUN {
x = BetaNoncentral$new(shape1 = 2, shape2 = 5, location = 3)
# Update parameters
x$setParameterValue(shape1 = 1)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
summary(x)
# }
Run the code above in your browser using DataLab