Learn R Programming

distr6 (version 1.3.2)

Normal: Normal Distribution Class

Description

Mathematical and statistical functions for the Normal distribution, which is commonly used in significance testing, for representing models with a bell curve, and as a result of the central limit theorem.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Normal$new(mean = 0, var = 1, sd = NULL, prec = NULL, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
mean numeric mean, location parameter.
var numeric variance, squared scale parameter.
sd numeric standard deviation, scale parameter.
prec numeric precision, inverse squared scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Normal distribution is parameterised with mean as a numeric, and either var, sd or prec as numerics. These are related via, $$sd = \sqrt(var)$$$$prec = 1/var$$ If prec is given then sd and var are ignored. If sd is given then var is ignored.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr
mode(which = "all") mode

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

The Normal distribution parameterised with variance, \(\sigma^2\), and mean, \(\mu\), is defined by the pdf, $$f(x) = exp(-(x-\mu)^2/(2\sigma^2)) / \sqrt{2\pi\sigma^2}$$ for \(\mu \epsilon R\) and \(\sigma^2 > 0\).

The distribution is supported on the Reals.

Also known as the Gaussian distribution.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions.

Examples

Run this code
# NOT RUN {
# Different parameterisations
Normal$new(var = 1, mean = 1)
Normal$new(prec = 2, mean = 1)
Normal$new(mean = 1, sd = 2)

x <- Normal$new(verbose = TRUE) # Standard normal default

# Update parameters
x$setParameterValue(var = 2)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab