Learn R Programming

distr6 (version 1.3.6)

Gumbel: Gumbel Distribution Class

Description

Mathematical and statistical functions for the Gumbel distribution, which is commonly used to model the maximum (or minimum) of a number of samples of different distributions, and is a special case of the Generalised Extreme Value distribution.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Gumbel$new(location = 0, scale = 1, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
location numeric location parameter.
scale numeric scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Gumbel distribution is parameterised with location as a numeric and scale as a positive numeric.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Gumbel distribution parameterised with location, \(\mu\), and scale, \(\beta\), is defined by the pdf, $$f(x) = exp(-(z + exp(-z)))/\beta$$ for \(z = (x-\mu)/\beta\), \(\mu \epsilon R\) and \(\beta > 0\).

The distribution is supported on the Reals.

Apery's Constant to 16 significant figures is used in the skewness calculation. The gammaz function from the pracma package is used in the cf to allow complex inputs.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. Frechet and Weibull for other special cases of the generalized extreme value distribution. gammaz for the references for the gamma function with complex inputs.

Examples

Run this code
# NOT RUN {
x = Gumbel$new(location = 2, scale = 5)

# Update parameters
x$setParameterValue(scale = 3)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab