Learn R Programming

dti (version 1.5.4.3)

dti-package: tools:::Rd_package_title("dti")

Description

tools:::Rd_package_description("dti")

Arguments

Author

tools:::Rd_package_author("dti")

Maintainer: tools:::Rd_package_maintainer("dti")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("dti") tools:::Rd_package_indices("dti")

References

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

S. Mohammadi, K. Tabelow, L. Ruthotto, Th. Feiweier, J. Polzehl, and N. Weiskopf, High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing, 8 (2015), 427.

S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, and J. Polzehl, Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS, NeuroImage 95 (2014), pp. 90-105.

S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann and J. Polzehl, Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS), Medical Image Analysis, 16 (2012), pp. 1142-1155.

J. Polzehl and K. Tabelow, Beyond the diffusion tensor model: The package dti, Journal of Statistical Software, 44 no. 12 (2011) pp. 1-26.

K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, 203 (2012), pp. 200-211.

J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31 (2009) pp. 1--24.

K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).

See Also

Examples

Run this code
  if (FALSE) demo(dti_art)
  if (FALSE) demo(mixtens_art)

Run the code above in your browser using DataLab