# NOT RUN {
## t Tests
res <- t.test(1:10, y = c(7:20), var.equal = TRUE)
t_to_d(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter)
res <- with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))
t_to_d(t = res$statistic, res$parameter, paired = TRUE)
t_to_r(t = res$statistic, res$parameter)
# }
# NOT RUN {
## Linear Regression
model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris)
library(parameters)
(param_tab <- parameters(model))
(rs <- t_to_r(param_tab$t[2:3], param_tab$df_error[2:3]))
if(require(see)) plot(rs)
# How does this compare to actual partial correlations?
if (require("correlation")) {
correlation::correlation(iris[,1:3], partial = TRUE)[1:2, c(2,3,7,8)]
}
## Use with emmeans based contrasts (see also t_to_eta2)
if (require(emmeans)) {
warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
conts <- summary(pairs(emmeans(warp.lm, ~ tension | wool)))
t_to_d(conts$t.ratio, conts$df)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab