Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

effectsize

Size does matter

The goal of this package is to provide utilities to work with indices of effect size and standardized parameters, allowing computation and conversion of indices such as Cohen’s d, r, odds-ratios, etc.

Installation

Run the following to install the stable release of effectsize from CRAN:

install.packages("effectsize")

Or this one to install the latest development version:

install.packages("remotes")
remotes::install_github("easystats/effectsize")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

This package is focused on indices of effect size. Check out the package website for a full list of features and functions provided by effectsize.

library(effectsize)

Effect Size Computation

Standardized Differences (Cohen’s d, Hedges’ g, Glass’ delta)

The package provides functions to compute indices of effect size.

cohens_d(mpg ~ am, data = mtcars)
## Cohen's d |         95% CI
## --------------------------
## -1.48     | [-2.27, -0.67]
## 
## - Estimated using pooled SD.

hedges_g(mpg ~ am, data = mtcars)
## Hedges' g |         95% CI
## --------------------------
## -1.44     | [-2.21, -0.65]
## 
## - Estimated using pooled SD.
## - Bias corrected using Hedges and Olkin's method.

glass_delta(mpg ~ am, data = mtcars)
## Glass' delta |         95% CI
## -----------------------------
## -1.17        | [-2.01, -0.66]

effectsize also provides effect sizes for contingency tables, rank tests, and more…

ANOVAs (Eta2, Omega2, …)

model <- aov(mpg ~ factor(gear), data = mtcars)

eta_squared(model)
## Parameter    | Eta2 |       90% CI
## ----------------------------------
## factor(gear) | 0.43 | [0.18, 0.59]

omega_squared(model)
## Parameter    | Omega2 |       90% CI
## ------------------------------------
## factor(gear) |   0.38 | [0.14, 0.55]

epsilon_squared(model)
## Parameter    | Epsilon2 |       90% CI
## --------------------------------------
## factor(gear) |     0.39 | [0.14, 0.56]

And more…

Regression Models (Standardized Parameters)

Importantly, effectsize also provides advanced methods to compute standardized parameters for regression models.

m <- lm(rating ~ complaints + privileges + advance, data = attitude)

standardize_parameters(m)
## # Standardization method: refit
## 
## Parameter   | Coefficient (std.) |        95% CI
## ------------------------------------------------
## (Intercept) |          -9.57e-16 | [-0.22, 0.22]
## complaints  |               0.85 | [ 0.58, 1.13]
## privileges  |              -0.04 | [-0.33, 0.24]
## advance     |              -0.02 | [-0.26, 0.22]

Also, models can be re-fit with standardized data:

standardize(m)
## 
## Call:
## lm(formula = rating ~ complaints + privileges + advance, data = data_std)
## 
## Coefficients:
## (Intercept)   complaints   privileges      advance  
##   -9.57e-16     8.55e-01    -4.35e-02    -2.19e-02

Effect Size Conversion

The package also provides ways of converting between different effect sizes.

convert_d_to_r(d = 1)
## [1] 0.447

And for recovering effect sizes from test statistics.

F_to_d(15, df = 1, df_error = 60)
## d    |       95% CI
## -------------------
## 1.00 | [0.46, 1.53]

F_to_r(15, df = 1, df_error = 60)
## r    |       95% CI
## -------------------
## 0.45 | [0.22, 0.61]

F_to_eta2(15, df = 1, df_error = 60)
## Eta2 (partial) |       90% CI
## -----------------------------
## 0.20           | [0.07, 0.34]

Effect Size Interpretation

The package allows for an automated interpretation of different indices.

interpret_r(r = 0.3)
## [1] "large"
## (Rules: funder2019)

Different sets of “rules of thumb” are implemented (guidelines are detailed here) and can be easily changed.

interpret_d(d = 0.45, rules = "cohen1988")
## [1] "small"
## (Rules: cohen1988)

interpret_d(d = 0.45, rules = "gignac2016")
## [1] "moderate"
## (Rules: gignac2016)

Utilities

Data Standardization, Normalization, Scaling, and Rank-Transforming

Many indices of effect size stem out, or are related, to standardization. Thus, it is expected that effectsize provides functions to standardize data.

A standardization sets the mean and SD to 0 and 1:

library(parameters) # for describe_distribution

df <- standardize(attitude)
describe_distribution(df$rating)
##      Mean | SD |  IQR |         Range | Skewness | Kurtosis |  n | n_Missing
## ----------------------------------------------------------------------------
## -5.46e-16 |  1 | 1.29 | [-2.02, 1.67] |    -0.40 |    -0.49 | 30 |         0

Alternatively, normalization is similar to standardization in that it is a linear translation of the parameter space (i.e., it does not change the shape of the data distribution). However, it puts the values within a 0 - 1 range, which can be useful in cases where you want to compare or visualise data on the same scale.

df <- normalize(attitude)
describe_distribution(df$rating)
## Mean |   SD |  IQR |        Range | Skewness | Kurtosis |  n | n_Missing
## ------------------------------------------------------------------------
## 0.55 | 0.27 | 0.35 | [0.00, 1.00] |    -0.40 |    -0.49 | 30 |         0

This is a special case of a rescaling function, which can be used to rescale the data to an arbitrary new scale. Let’s change all numeric variables to “percentages”:

df <- change_scale(attitude, to = c(0, 100)) 
describe_distribution(df$rating)
##  Mean |    SD |   IQR |          Range | Skewness | Kurtosis |  n | n_Missing
## -----------------------------------------------------------------------------
## 54.74 | 27.05 | 35.00 | [0.00, 100.00] |    -0.40 |    -0.49 | 30 |         0

For some robust statistics, one might also want to transform the numeric values into ranks, which can be performed using the ranktransform() function.

ranktransform(c(1, 3, -2, 6, 6, 0.5))
## [1] 3.0 4.0 1.0 5.5 5.5 2.0

or signed-ranks:

ranktransform(c(1, 3, -2, 6, 6, 0.5), sign = TRUE)
## [1]  2.0  4.0 -3.0  5.5  5.5  1.0

Citation

In order to cite this package, please use the following citation:

  • Ben-Shachar M, Lüdecke D, Makowski D (2020). effectsize: Estimation of Effect Size Indices and Standardized Parameters. Journal of Open Source Software, 5(56), 2815. doi: 10.21105/joss.02815

Corresponding BibTeX entry:

@Article{,
  title = {{e}ffectsize: Estimation of Effect Size Indices and Standardized Parameters},
  author = {Mattan S. Ben-Shachar and Daniel Lüdecke and Dominique Makowski},
  year = {2020},
  journal = {Journal of Open Source Software},
  volume = {5},
  number = {56},
  pages = {2815},
  publisher = {The Open Journal},
  doi = {10.21105/joss.02815},
  url = {https://doi.org/10.21105/joss.02815}
}

Contributing and Support

If you have any questions regarding the the functionality of the package, you may either contact us via email or also file an issue. Anyone wishing to contribute to the package by adding functions, features, or in another way, please follow this guide and our code of conduct.

Copy Link

Version

Install

install.packages('effectsize')

Monthly Downloads

59,962

Version

0.4.4

License

GPL-3

Maintainer

Mattan S. Ben-Shachar

Last Published

March 14th, 2021

Functions in effectsize (0.4.4)

d_to_common_language

Convert Standardized Mean Difference to Common Language Effect Sizes
chisq_to_phi

Conversion Chi-Squared to Phi or Cramer's V
cohens_d

Effect size for differences
change_scale

Rescale a numeric variable
F_to_eta2

Convert test statistics (F, t) to indices of partial variance explained (partial Eta / Omega / Epsilon squared and Cohen's f)
d_to_r

Convert between d, r and Odds ratio
.factor_to_numeric

Safe transformation from factor/character to numeric
adjust

Adjust data for the effect of other variable(s)
effectsize-CIs

Confidence Intervals
effectsize

Effect Size
equivalence_test.effectsize_table

Test for Practical Equivalence
es_info

List of effect size names
interpret_bf

Interpret Bayes Factor (BF)
interpret

Generic function for interpretation
eta2_to_f2

Convert between ANOVA effect sizes
interpret_ess

Interpret Bayesian diagnostic indices
eta_squared

Effect size for ANOVA
interpret_gfi

Interpret of indices of CFA / SEM goodness of fit
interpret_parameters

Interpret of standardized slopes
interpret_r

Interpret correlation
interpret_direction

Interpret direction
interpret_d

Interpret standardized differences
format_standardize

Transform a standardized vector into character
hardlyworking

Workers' salary and other information
interpret_r2

Interpret coefficient of determination (R2)
is_effectsize_name

Checks if character is of a supported effect size
t_to_d

Convert test statistics (t, z, F) to effect sizes of differences (Cohen's d) or association (partial r)
normalize

Normalize numeric variable to [0-1] range
interpret_kendalls_w

Interpret Kendall's coefficient of concordance
odds_to_probs

Convert between Odds and Probabilities
oddsratio_to_riskratio

Convert between Odds ratios and Risk ratios
interpret_rope

Interpret Bayesian diagnostic indices
ranktransform

(Signed) rank transformation
rank_biserial

Effect size for non-parametric (rank sum) tests
standardize

Standardization (Z-scoring)
interpret_oddsratio

Interpret Odds ratio
sd_pooled

Pooled Standard Deviation
reexports

Objects exported from other packages
rules

Interpretation Grid
plot.effectsize_table

Methods for effectsize tables
interpret_p

Interpret p-values
interpret_omega_squared

Interpret ANOVA effect size
phi

Effect size for contingency tables
standardize_info

Get Standardization Information
standardize_parameters

Parameters standardization