Learn R Programming

effectsize (version 0.4.4)

interpret_oddsratio: Interpret Odds ratio

Description

Interpret Odds ratio

Usage

interpret_oddsratio(OR, rules = "chen2010", log = FALSE)

Arguments

OR

Value or vector of (log) odds ratio values.

rules

Can be "chen2010" (default), "cohen1988" (through transformation to standardized difference, see odds_to_d()) or custom set of rules().

log

Are the provided values log odds ratio.

Rules

Rules apply to OR as ratios, so OR of 10 is as extreme as a OR of 0.1 (1/10).

  • Chen et al. (2010) ("chen2010"; default)

    • OR < 1.68 - Very small

    • 1.68 <= OR < 3.47 - Small

    • 3.47 <= OR < 6.71 - Medium

    • **OR >= 6.71 ** - Large

  • Cohen (1988) ("cohen1988", based on the oddsratio_to_d() conversion, see interpret_d())

    • OR < 1.44 - Very small

    • 1.44 <= OR < 2.48 - Small

    • 2.48 <= OR < 4.27 - Medium

    • **OR >= 4.27 ** - Large

References

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.

  • Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics<U+2014>Simulation and Computation, 39(4), 860-864.

  • S<U+00E1>nchez-Meca, J., Mar<U+00ED>n-Mart<U+00ED>nez, F., & Chac<U+00F3>n-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological methods, 8(4), 448.

Examples

Run this code
# NOT RUN {
interpret_oddsratio(1)
interpret_oddsratio(c(5, 2))
# }

Run the code above in your browser using DataLab