library(embryogrowth)
data(nest)
formated <- FormatNests(nest)
# The initial parameters value can be:
# "T12H", "DHA", "DHH", "Rho25"
# Or
# "T12L", "T12H", "DHA", "DHH", "DHL", "Rho25"
x <- structure(c(118.768297442004, 475.750095909406, 306.243694918151,
116.055824800264), .Names = c("DHA", "DHH", "T12H", "Rho25"))
# pfixed <- c(K=82.33) or rK=82.33/39.33
pfixed <- c(rK=2.093313)
resultNest_4p <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, derivate=dydt.Gompertz, M0=1.7,
test=c(Mean=39.33, SD=1.92), method = "BFGS", maxiter = 200)
data(resultNest_4p)
pMCMC <- embryogrowth_MHmcmc_p(resultNest_4p, accept=TRUE)
# Take care, it can be very long; several days
result_mcmc_4p <- embryogrowth_MHmcmc(result=resultNest_4p,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
n.adapt = 0, thin=1, trace=TRUE)
data(result_mcmc_4p)
out <- as.mcmc(result_mcmc_4p)
# This out can be used with coda package
# plot() can use the direct output of embryogrowth_MHmcmc() function.
plot(result_mcmc_4p, parameters=1, xlim=c(0,550))
plot(result_mcmc_4p, parameters=3, xlim=c(290,320))
# summary() permits to get rapidly the standard errors for parameters
summary(result_mcmc_4p)
# They are store in the result also. Two SE are estimated using or
# batch method or time-series SE:
# The batch standard error procedure is usually thought to be not
# as accurate as the time series methods.
se1 <- result_mcmc_4p$BatchSE
se2 <- result_mcmc_4p$TimeSeriesSE
Run the code above in your browser using DataLab