Learn R Programming

embryogrowth (version 5.0)

tsd: Estimate the parameters that best describe temperature-dependent sex determination

Description

Estimate the parameters that best describe temperature-dependent sex determination

Usage

tsd(males = NULL, females = NULL, N = NULL, temperatures = NULL,
  df = NULL, l = 0.05, parameters.initial = c(P = NA, S = -0.5, K = 0),
  males.freq = TRUE, las.x = 1, las.y = 1,
  lab.PT = "Pivotal temperature",
  lab.TRT = paste0("Transitional range of temperatures l=", l * 100, "%"),
  col.TRT = "gray", col.TRT.CI = rgb(0.8, 0.8, 0.8, 0.5),
  col.PT.CI = rgb(0.8, 0.8, 0.8, 0.5), equation = "logistic",
  replicate = 1000, range.CI = 0.95, print = TRUE, ...)

Arguments

males
A vector with male numbers
females
A vector with female numbers
N
A vector with total numbers
temperatures
The constant incubation temperatures or any covariate used to fit sex ratio
df
A dataframe with at least two columns named males, females or N and temperatures column
l
The limit to define TRT (see Girondot, 1999)
parameters.initial
Initial values for P, S or K search as a vector, ex. c(P=29, S=-0.3)
las.x
las parameter for x axis
las.y
las parameter for y axis
lab.PT
Label to describe pivotal temperature
lab.TRT
Label to describe transitional range of temperature
males.freq
Should the graph uses males frequency [TRUE] or females [FALSE]
equation
Could be "logistic", "Hill", "Richards" or "GSD"
replicate
Number of replicate to estimate SE of TRT
range.CI
The range of confidence interval for estimation, default=0.95
col.TRT
The color of TRT
col.TRT.CI
The color of CI of TRT based on range.CI
col.PT.CI
The color of CI of PT based on range.CI
print
Do the results must be printed at screen? TRUE or FALSE
...
Graphical parameters for plot(), exemple xlab="", ylab="", main=""

Value

  • A list the pivotal temperature, transitional range of temperatures and their SE

Details

tsd estimates the parameters that best describe temperature-dependent sex determination

References

Girondot, M. 1999. Statistical description of temperature-dependent sex determination using maximum likelihood. Evolutionary Ecology Research, 1, 479-486.

Godfrey, M.H., Delmas, V., Girondot, M., 2003. Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Ecoscience 10, 265-272.

Hulin, V., Delmas, V., Girondot, M., Godfrey, M.H., Guillon, J.-M., 2009. Temperature-dependent sex determination and global change: are some species at greater risk? Oecologia 160, 493-506.

Examples

Run this code
CC_AtlanticSW <- subset(STSRE_TSD, RMU=="Atlantic, SW" &
                          Species=="Caretta caretta" & Sexed!=0)
par(mar=c(4,4,5,1)+0.1)
tsdL <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
                                 temperatures=Incubation.temperature-Correction.factor,
                                 equation="logistic"))
tsdH <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
                                 temperatures=Incubation.temperature-Correction.factor,
                                 equation="Hill"))
tsdR <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
                                 temperatures=Incubation.temperature-Correction.factor,
                                 equation="Richards"))
gsd <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
                                 temperatures=Incubation.temperature-Correction.factor,
                                 equation="GSD"))
compare_AIC(Logistic_Model=tsdL, Hill_model=tsdH, Richards_model=tsdR, GSD_model=gsd)

Run the code above in your browser using DataLab