powered by
This function builds a classification model using Support Vector Machine.
SVM( train, labels, gamma = 2^(-3:3), cost = 2^(-3:3), kernel = c("radial", "linear"), methodparameters = NULL, tune = FALSE, ... )
The training set (description), as a data.frame.
data.frame
Class labels of the training set (vector or factor).
vector
factor
The gamma parameter (if a vector, cross-over validation is used to chose the best size).
The cost parameter (if a vector, cross-over validation is used to chose the best size).
The kernel type.
Object containing the parameters. If given, it replaces gamma and cost.
gamma
cost
If true, the function returns paramters instead of a classification model.
Other arguments.
The classification model.
svm, SVMl, SVMr
svm
SVMl
SVMr
# NOT RUN { require (datasets) data (iris) SVM (iris [, -5], iris [, 5], kernel = "linear", cost = 1) SVM (iris [, -5], iris [, 5], kernel = "radial", gamma = 1, cost = 1) # }
Run the code above in your browser using DataLab