This function calculates and prints the Q-statistics (or Z-statistics) which are useful to test normality of the residuals within a range of an independent variable, for example age in centile estimation, see Royston and Wright (2000).
Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10,
zvals = TRUE, save = TRUE, plot = TRUE, digits.xvar = getOption("digits"),
...)
a GAMLSS object
a unique explanatory variable
quantile or standardised residuals can be given here instead of a GAMLSS object in obj
. In this case the function behaves diffently (see details below)
the x-axis cut off points e.g. c(20,30)
. If xcut.points=NULL
then the n.inter
argument is activated
if xcut.points=NULL
this argument gives the number of intervals in which the x-variable will be split, with default 10
if TRUE
the output matrix contains the individual Z-statistics rather that the Q statistics
whether to save the Q-statistics or not with default equal to TRUE
.
In this case the functions produce a matrix giving individual Q (or z) statistics and the final aggregate Q's
whether to plot a visual version of the Q statistics (default is TRUE)
to control the number of digits of the xvar
in the plot
for extra arguments
A table containing the Q-statistics or Z-statistics. If plot=TRUE
it produces also an graphical represenation of the table.
Note that the function Q.stats
behaves differently depending whether the obj
or the resid
argument is set. The obj
argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument resid
allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Royston P. and Wright E. M. (2000) Goodness of fit statistics for the age-specific reference intervals. Statistics in Medicine, 19, pp 2943-2962.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also http://www.gamlss.org/).
# NOT RUN {
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x,n.inter=8)
Q.stats(h,xvar=abdom$x,n.inter=8,zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)
# }
Run the code above in your browser using DataLab