Usage
lmm.aireml(Y, X = matrix(1, nrow = length(Y)), K, EMsteps = 0L, EMsteps_fail = 1L, EM_alpha = 1, min_tau, min_s2 = 1e-06, theta, constraint = TRUE, max_iter = 50L, eps = 1e-05, verbose = getOption("gaston.verbose", TRUE), contrast = FALSE, get.P = FALSE)
Arguments
X
Covariable matrix. By default, a column of ones to include an intercept in the model
K
A positive definite matrix or a list of such matrices
EMsteps
Number of EM steps ran prior the AIREML
EMsteps_fail
Number of EM steps performed when the AIREML algorithm fail to improve the likelihood value
EM_alpha
Tweaking parameter for the EM (see Details)
min_tau
Minimal value for model parameter $tau$ (if missing, will be set to $1e-6$)
min_s2
Minimal value for model parameter $sigma^2$
theta
(Optional) Optimization starting point theta = c(sigma^2, tau)
constraint
If TRUE, the model parameters respect the contraints given by min_tau and min_s2
max_iter
Maximum number of iterations
eps
The algorithm stops when the gradient norm is lower than this parameter
verbose
If TRUE, display information on the algorithm progress
contrast
If TRUE, use a contrast matrix to compute the Restricted Likelihood (usually slower)
get.P
If TRUE, the function sends back the last matrix $P$ computed in the optimization process