Usage
lmm.aireml(Y, X = matrix(1, nrow = length(Y)), K, EMsteps = 0L, EMsteps_fail = 1L, EM_alpha = 1, min_tau, min_s2 = 1e-06, theta, constraint = TRUE, max_iter = 50L, eps = 1e-05, verbose = getOption("gaston.verbose", TRUE), contrast = FALSE, get.P = FALSE)
Arguments
X
Covariable matrix. By default, a column of ones to include an intercept in the model
K
A positive definite matrix or a list
of such matrices
EMsteps
Number of EM steps ran prior the AIREML
EMsteps_fail
Number of EM steps performed when the AIREML algorithm fail to improve the likelihood value
EM_alpha
Tweaking parameter for the EM (see Details)
min_tau
Minimal value for model parameter $tau$ (if missing, will be set to $1e-6$)
min_s2
Minimal value for model parameter $sigma^2$
theta
(Optional) Optimization starting point theta = c(sigma^2, tau)
constraint
If TRUE
, the model parameters respect the contraints given by min_tau
and min_s2
max_iter
Maximum number of iterations
eps
The algorithm stops when the gradient norm is lower than this parameter
verbose
If TRUE
, display information on the algorithm progress
contrast
If TRUE
, use a contrast matrix to compute the Restricted Likelihood (usually slower)
get.P
If TRUE
, the function sends back the last matrix $P$ computed in the optimization process