Learn R Programming

gencve (version 0.3)

SinghTest: Singh Prostate Microarray Test Data

Description

Microarray data for 25 prostate tumors and 9 nontumors from patients undergoing surgery.

Usage

data("SinghTest")

Arguments

Format

A data frame with 102 observations on the following 101 variables.
gene1
a numeric vector
gene2
a numeric vector
gene3
a numeric vector
gene4
a numeric vector
gene5
a numeric vector
gene6
a numeric vector
gene7
a numeric vector
gene8
a numeric vector
gene9
a numeric vector
gene10
a numeric vector
gene11
a numeric vector
gene12
a numeric vector
gene13
a numeric vector
gene14
a numeric vector
gene15
a numeric vector
gene16
a numeric vector
gene17
a numeric vector
gene18
a numeric vector
gene19
a numeric vector
gene20
a numeric vector
gene21
a numeric vector
gene22
a numeric vector
gene23
a numeric vector
gene24
a numeric vector
gene25
a numeric vector
gene26
a numeric vector
gene27
a numeric vector
gene28
a numeric vector
gene29
a numeric vector
gene30
a numeric vector
gene31
a numeric vector
gene32
a numeric vector
gene33
a numeric vector
gene34
a numeric vector
gene35
a numeric vector
gene36
a numeric vector
gene37
a numeric vector
gene38
a numeric vector
gene39
a numeric vector
gene40
a numeric vector
gene41
a numeric vector
gene42
a numeric vector
gene43
a numeric vector
gene44
a numeric vector
gene45
a numeric vector
gene46
a numeric vector
gene47
a numeric vector
gene48
a numeric vector
gene49
a numeric vector
gene50
a numeric vector
gene51
a numeric vector
gene52
a numeric vector
gene53
a numeric vector
gene54
a numeric vector
gene55
a numeric vector
gene56
a numeric vector
gene57
a numeric vector
gene58
a numeric vector
gene59
a numeric vector
gene60
a numeric vector
gene61
a numeric vector
gene62
a numeric vector
gene63
a numeric vector
gene64
a numeric vector
gene65
a numeric vector
gene66
a numeric vector
gene67
a numeric vector
gene68
a numeric vector
gene69
a numeric vector
gene70
a numeric vector
gene71
a numeric vector
gene72
a numeric vector
gene73
a numeric vector
gene74
a numeric vector
gene75
a numeric vector
gene76
a numeric vector
gene77
a numeric vector
gene78
a numeric vector
gene79
a numeric vector
gene80
a numeric vector
gene81
a numeric vector
gene82
a numeric vector
gene83
a numeric vector
gene84
a numeric vector
gene85
a numeric vector
gene86
a numeric vector
gene87
a numeric vector
gene88
a numeric vector
gene89
a numeric vector
gene90
a numeric vector
gene91
a numeric vector
gene92
a numeric vector
gene93
a numeric vector
gene94
a numeric vector
gene95
a numeric vector
gene96
a numeric vector
gene97
a numeric vector
gene98
a numeric vector
gene99
a numeric vector
gene100
a numeric vector
health
a factor with levels normal tumor

Source

Nathalie Pochet, Frank De Smet, Johan A.K. Suykens and Bart L.R. De Moor (2004). Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction. Bioinformatics Advance Access published July 1, 2004.

Details

The data have been standardized by patient. The best 100 genes out of 12600 genes in the original have been selected. Pochet et al. (2004) suggested this test dataset. It was also mentioned in Speed's book.

References

Terry Speed

See Also

featureSelect, churnTrain

Examples

Run this code
require("MASS")
data(SinghTest)
BestGenes <- 10
XTr <- SinghTrain[,1:BestGenes]
yTr <- SinghTrain$health
ans <- lda(x=XTr, grouping=yTr)
XTe <- SinghTest[,1:BestGenes]
yH <- predict(ans, newdata=XTe)$class
yTe <- SinghTest$health
table(yTe, yH)

Run the code above in your browser using DataLab