Learn R Programming

gencve (version 0.3)

yhat_lars: Fit LASSO Regression using Mallows Cp and Predict

Description

LASSO regression is fit using the lars algorithm

Usage

yhat_lars(dfTrain, dfTest, normalize = TRUE)

Arguments

dfTrain
Data frame for training data. Last column must be the output variable.
dfTest
Data frame for test data. Last column must be the output variable.
normalize
Default TRUE means the predictors are centered and scaled. Otherwise no transformation.

Value

Examples

Run this code
Xy <- prostate
X <- prostate[,-9]
y <- prostate[,9]
n <- length(y)
d <- 10
set.seed(777513)
iTe <- sample(n, size=d)
iTr <- (1:n)[!match(1:n, iTe, nomatch = 0) > 0]
trdf <- data.frame(X[iTr,], y=y[iTr]) #X, y already defined
tedf <- data.frame(X[iTe,], y=y[iTe])
yhat_lars(trdf, tedf)

Run the code above in your browser using DataLab