TLmoms
). The mean,
L-scale, coefficient of L-variation ($\tau$, LCV, L-scale/mean),
L-skew ($\tau_3$, TAU3, L3/L2),
L-kurtosis ($\tau_4$, TAU4, L4/L2), and $\tau_5$ (TAU5, L4/L2) are computed.
In conventional nomenclature, the L-moments are$$\hat{\lambda}_1 = \mbox{L1} = \mbox{mean, }$$ $$\hat{\lambda}_2 = \mbox{L2} = \mbox{L-scale, }$$ $$\hat{\lambda}_3 = \mbox{L3} = \mbox{third L-moment, }$$ $$\hat{\lambda}_4 = \mbox{L4} = \mbox{fourth L-moment, }$$ $$\hat{\lambda}_5 = \mbox{L5} = \mbox{fifth L-moment, }$$ $$\hat{\tau} = \mbox{LCV} = \lambda_2/\lambda_1 = \mbox{coefficient of L-variation, }$$ $$\hat{\tau}_3 = \mbox{TAU3} = \lambda_3/\lambda_2 = \mbox{L-skew, }$$ $$\hat{\tau}_4 = \mbox{TAU4} = \lambda_4/\lambda_2 = \mbox{L-kurtosis, and}$$ $$\hat{\tau}_5 = \mbox{TAU5} = \lambda_5/\lambda_2 = \mbox{not named.}$$
lmom.ub(x)
list
is returned.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
Wang, Q.J., 1996b, Direct sample estimators of L-moments: Water Resources Research, vol. 32, no. 12., pp. 3617--3619.
lmom2pwm
, pwm.ub
, pwm2lmom
, lmoms
, and lmorph
lmr <- lmom.ub(c(123,34,4,654,37,78))
lmorph(lmr)
lmom.ub(rnorm(100))
Run the code above in your browser using DataLab