parTLgpa
.
The TL-moments in terms of the parameters are$$\lambda^{(1)}_1 = \xi + \frac{\alpha(\kappa+5)}{(\kappa+3)(\kappa+2)} \mbox{,}$$ $$\lambda^{(1)}_2 = \frac{6\alpha}{(\kappa+4)(\kappa+3)(\kappa+2)} \mbox{,}$$ $$\tau^{(1)}_3 = \frac{10(1-\kappa)}{9(\kappa+5)} \mbox{, and}$$ $$\tau^{(1)}_4 = \frac{5(\kappa-1)(\kappa-2)}{4(\kappa+6)(\kappa+5)} \mbox{.}$$
lmomTLgpa(para)
list
is returned.Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
parTLgpa
, quagpa
, cdfgpa
TL <- TLmoms(c(123,34,4,654,37,78,21,3400),trim=1)
TL
lmomTLgpa(parTLgpa(TL))
Run the code above in your browser using DataLab