set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
# Calculate the pairwise mutual information matrix
mim(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,
feature_count = 2)
# Obtain the sparse (lazy-evaluated) mutual information matrix.
mim(filter)
Run the code above in your browser using DataLab