Learn R Programming

maxLik (version 0.5-6)

summary.maxLik: summary the Maximum-Likelihood estimation

Description

Summary the Maximum-Likelihood estimation including standard errors and t-values.

Usage

## S3 method for class 'maxLik':
summary(object, eigentol=1e-12, ... )

Arguments

object
object of class 'maxLik', most probably a result from Maximum-Likelihood estimation.
eigentol
nonzero print limit on the range of the absolute values of the hessian. Specifically, define:

absEig <- eigen(hessian(object), symmetric=TRUE)[['values']]

Then compute and print t values, p values, etc. only if min(absEig) > (eigentol *

...
currently not used.

Value

  • object of class 'summary.maxLik' with following components:
  • typetype of maximisation.
  • iterationsnumber of iterations.
  • codecode of success.
  • messagea short message describing the code.
  • loglikthe loglik value in the maximum.
  • estimatenumeric matrix, the first column contains the parameter estimates, the second the standard errors, third t-values and fourth corresponding probabilities.
  • activeParlogical vector, which parameters are treated as free.
  • NActiveParnumber of free parameters.

See Also

maxLik

Examples

Run this code
## ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
## Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, print.level=2)
summary(a)
## Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
summary(a)

Run the code above in your browser using DataLab