mclust2Dplot(data, parameters = NULL, z = NULL,
classification = NULL, truth = NULL, uncertainty = NULL,
what = c("classification","uncertainty","errors"),
quantiles = c(0.75,0.95), symbols = NULL, colors = NULL,
scale = FALSE, xlim = NULL, ylim = NULL, CEX = 1, PCH = ".",
identify = FALSE, swapAxes = FALSE, ...)
[i,k]
th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification
and
uncertainty
if those arguments arendata
. If present argument z
will be ignored.classification
or z
is also present,
this is used for displaying classification errors.z
will be ignored."classification"
(default), "errors"
, "uncertainty"
.classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order usedclassification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the fuscale=FALSE
C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
surfacePlot
,
clPairs
,
coordProj
,
mclust.options
faithfulModel <- mclustModel(faithful,mclustBIC(faithful))
mclust2Dplot(faithful, parameters=faithfulModel$parameters,
z=faithfulModel$z, what = "classification", identify = TRUE)
mclust2Dplot(faithful, parameters=faithfulModel$parameters,
z=faithfulModel$z, what = "uncertainty", identify = TRUE)
Run the code above in your browser using DataLab