trimfill(x, seTE, left=NULL, ma.fixed=TRUE, type="L", n.iter.max=50,
sm=NULL, studlab=NULL, level=x$level, level.comb=x$level.comb,
comb.fixed=x$comb.fixed, comb.random=x$comb.random, silent=TRUE)
meta
, or estimated treatment
effect in individual studies.x
not of class meta
).metabias(..., meth="linreg")
) is used to de"L"
or "R"
."RD"
, "RR"
, "OR"
, "AS"
,
"MD"
, "SMD"
; ignored if x
is of class
meta
x
is of class meta
.x$level
is used as value for
level
; otherwise 0.95 is used.x$level.comb
is used as
value for level.comb
; otherwise 0.95 is used.c("metagen", "meta", "trimfill")
. The object is a
list containing the following components:"Inverse"
. Internally, both fixed effect and random effects models are calculated
regardless of values choosen for arguments comb.fixed
and
comb.random
. Accordingly, the estimate for the random effects
model can be extracted from component TE.random
of an object
of class "meta"
even if comb.random=FALSE
. However, all
functions in R package meta
will adequately consider the values
for comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random effects
model if comb.random=FALSE
.
The function metagen
is called internally.
Duval S & Tweedie R (2000), Trim and Fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455--463.
metagen
, metabias
, funnel
data(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c,
data=Fleiss93, sm="OR")
tf1 <- trimfill(meta1)
summary(tf1)
funnel(tf1, pch=ifelse(tf1$trimfill, 1, 16),
level=0.95, comb.fixed=TRUE)
Run the code above in your browser using DataLab