metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,
data=NULL, subset=NULL,
sm=.settings$smcont, pooledvar=.settings$pooledvar,
level=.settings$level, level.comb=.settings$level.comb,
comb.fixed=.settings$comb.fixed, comb.random=.settings$comb.random,
hakn=.settings$hakn,
method.tau=.settings$method.tau, tau.preset=NULL, TE.tau=NULL,
tau.common=.settings$tau.common,
prediction=.settings$prediction, level.predict=.settings$level.predict,
method.bias=.settings$method.bias,
title=.settings$title, complab=.settings$complab, outclab="",
label.e=.settings$label.e, label.c=.settings$label.c,
label.left=.settings$label.left, label.right=.settings$label.right,
byvar, bylab, print.byvar=.settings$print.byvar,
keepdata=.settings$keepdata,
warn=.settings$warn)
"DL"
, "PM"
, "REML"
, "ML"
, "HS"
,
"SJ"
, "HE"
, o"rank"
, "linreg"
, or "mm"
, can
be abbreviated. See function metabias
"MD"
or "SMD"
) is to be used for pooling of
studies.sm="MD"
).n.e
).c("metacont", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"Inverse"
.hakn=TRUE
).keepdata=TRUE
).keepdata=TRUE
).method.tau="DL"
). The mean difference is used as measure of treatment effect if
sm="MD"
-- which correspond to sm="WMD"
in older
versions (<0.9) of="" the="" meta="" package.="" for="" summary="" measure="" "SMD", Hedges' adjusted g is utilised for pooling.
For several arguments defaults settings are utilised (assignments
with
.settings$
). These defaults can be changed using the
settings.meta
function.0.9)>
Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed
and comb.random
. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random
of an object of class "meta"
even if
argument comb.random=FALSE
. However, all functions in R
package meta
will adequately consider the values for
comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random
effects model if comb.random=FALSE
.
The function metagen
is called internally to calculate
individual and overall treatment estimates and standard errors.
A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction
and
comb.random
are TRUE
.
R function update.meta
can be used to redo the
meta-analysis of an existing metacont object by only specifying
arguments which should be changed.
For the random effects, the method by Hartung and Knapp (2003) is
used to adjust test statistics and confidence intervals if argument
hakn=TRUE
.
The iterative Paule-Mandel method (1982) to estimate the
between-study variance is used if argument
method.tau="PM"
. Internally, R function paulemandel
is
called which is based on R function mpaule.default from R package
metRology from S.L.R. Ellison method.tau
) are also available:
For these methods the R function method.tau="REML"
)method.tau="ML"
)method.tau="HS"
)method.tau="SJ"
)method.tau="HE"
)method.tau="EB"
).rma.uni
of R package metafor
is called internally. See help page of R function rma.uni
for
more details on these methods to estimate between-study variance.
DerSimonian R & Laird N (1986), Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177--188.
Hartung J & Knapp G (2001), On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statistics in Medicine, 20, 1771--82. doi: 10.1002/sim.791 . Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137--159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693--710, doi: 10.1002/sim.1482 . Paule RC & Mandel J (1982), Consensus values and weighting factors. Journal of Research of the National Bureau of Standards, 87, 377--385. Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta
, metabin
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
meta1
forest(meta1)
meta2 <- metacont(Fleiss93cont$n.e, Fleiss93cont$mean.e,
Fleiss93cont$sd.e,
Fleiss93cont$n.c, Fleiss93cont$mean.c,
Fleiss93cont$sd.c,
sm="SMD")
meta2
data(amlodipine)
meta3 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo),
n.plac, mean.plac, sqrt(var.plac),
data=amlodipine, studlab=study)
summary(meta3)
# Use pooled variance
#
meta4 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo),
n.plac, mean.plac, sqrt(var.plac),
data=amlodipine, studlab=study,
pooledvar=TRUE)
summary(meta4)
Run the code above in your browser using DataLab