Learn R Programming

msgl (version 2.3.9)

Multinomial Sparse Group Lasso

Description

Multinomial logistic regression with sparse group lasso penalty. Simultaneous feature selection and parameter estimation for classification. Suitable for high dimensional multiclass classification with many classes. The algorithm computes the sparse group lasso penalized maximum likelihood estimate. Use of parallel computing for cross validation and subsampling is supported through the 'foreach' and 'doParallel' packages. Development version is on GitHub, please report package issues on GitHub.

Copy Link

Version

Install

install.packages('msgl')

Monthly Downloads

154

Version

2.3.9

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Niels Richard Hansen

Last Published

May 8th, 2019

Functions in msgl (2.3.9)

msgl.algorithm.config

Create a new algorithm configuration
msgl_dense_sgl_fit_R

C interface
msgl

Deprecated fit function
parameters_stat.msgl

Extracting parameter statistics
msgl-package

Multinomial logistic regression with sparse group lasso penalty.
predict.msgl

Predict
msgl_dense_sgl_lambda_R

C interface
msgl.c.config

Featch information about the C side configuration of the package
msgl_sparse_sgl_fit_R

C interface
msgl_sparse_sgl_lambda_R

C interface
print.msgl

Print function for msgl
best_model.msgl

Index of best model
subsampling

Multinomial sparse group lasso generic subsampling procedure
models.msgl

Extract the fitted models
lambda

Computes a lambda sequence for the regularization path
msgl.standard.config

Standard msgl algorithm configuration
msgl_dense_sgl_predict_R

C interface
nmod.msgl

Number of models used for fitting
parameters.msgl

Nonzero parameters
msgl.subsampling

Deprecated subsampling function
msgl.cv

Deprecated cv function
x

Design matrix
msgl.lambda.seq

Deprecated lambda function
msgl_sparse_sgl_predict_R

C interface
msgl_dense_sgl_subsampling_R

C interface
msgl_sparse_sgl_subsampling_R

C interface
cv

Cross Validation
features.msgl

Nonzero features
Err.msgl

Compute error rates
PrimaryCancers

Primary cancer samples.
fit

Fit a multinomial sparse group lasso regularization path.
features_stat.msgl

Extract feature statistics
classes

Class vector
coef.msgl

Nonzero coefficients
SimData

Simulated data set