# NOT RUN {
data(SimData)
x.all <- x
x.1 <- x[1:50,]
x.2 <- x[51:100,]
classes.all <- classes
classes.1 <- classes[1:50]
classes.2 <- classes[51:100]
#### Fit models using x.1
lambda <- msgl::lambda(x.1, classes.1, alpha = .5, d = 25, lambda.min = 0.075)
fit <- msgl::fit(x.1, classes.1, alpha = .5, lambda = lambda)
#### Training errors:
# Misclassification rate
Err(fit, x.1)
# Misclassification count
Err(fit, x.1, type = "count")
# Negative log likelihood error
Err(fit, x.1, type="loglike")
# Misclassification rate of x.2
Err(fit, x.2, classes.2)
#### Do cross validation
fit.cv <- msgl::cv(x.all, classes.all, alpha = .5, lambda = lambda)
#### Cross validation errors (estimated expected generalization error)
# Misclassification rate
Err(fit.cv)
# Negative log likelihood error
Err(fit.cv, type="loglike")
#### Do subsampling
test <- list(1:20, 21:40)
train <- lapply(test, function(s) (1:length(classes.all))[-s])
fit.sub <- msgl::subsampling(x.all, classes.all, alpha = .5,
lambda = lambda, training = train, test = test)
# Mean misclassification error of the tests
Err(fit.sub)
# Negative log likelihood error
Err(fit.sub, type="loglike")
# }
Run the code above in your browser using DataLab