## Evaluation of the "WWDM" model
# Example I: by using the class constructors: mtkWWDMEvaluator()
# Generate the factors
data(WWDM.factors)
# Build the workflow:
# 1) specify the design process
designer <- mtkNativeDesigner("BasicMonteCarlo", information = list(size=50) )
# 2) specify the evaluation process;
model <- mtkWWDMEvaluator(listParameters = list(year=3) )
# 3) specify the workflow with the processes defined previously
exp <- mtkExpWorkflow( expFactors=WWDM.factors,
processesVector=c( design=designer, evaluate=model) )
# Run the workflow and report the results.
run(exp)
summary(exp)
# Personnalize the data reporting
designData <- extractData(exp,name="design")
simulationData <- extractData(exp,name="evaluate")
plot(designData$Eb, simulationData$Biomass, xlab="Eb",ylab="Biomass")
## Example II: by using the class constructor: mtkNativeEvaluator()
# Generate the input factors
data(WWDM.factors)
# Build the workflow:
# 1) specify the design process
designer <- mtkNativeDesigner("BasicMonteCarlo", information = list(size=20) )
# 2) specify the evaluation process;
model <- mtkNativeEvaluator(model="WWDM", information=list(year=3) )
# 3) specify the workflow with the processes defined previously
exp <- mtkExpWorkflow(expFactors=WWDM.factors,
processesVector=c( design=designer, evaluate=model) )
# Run the workflow and report the results.
run(exp)
summary(exp)
plot(exp)
Run the code above in your browser using DataLab