Learn R Programming

proportion (version 2.0.0)

ciAAll: CI estimation of 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) given adding factor

Description

CI estimation of 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) given adding factor

Usage

ciAAll(n, alp, h)

Arguments

n
- Number of trials
alp
- Alpha value (significance level required)
h
- adding factor

Value

A dataframe with
name
- Name of the method
x
- Number of successes (positive samples)
LLT
- Lower limit
ULT
- Upper Limit
LABB
- Lower Abberation
UABB
- Upper Abberation
ZWI
- Zero Width Interval

Details

The Confidence Interval using 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) for n given alp and h

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Other Adjusted methods of CI estimation: PlotciAAS, PlotciAAllg, PlotciAAll, PlotciALR, PlotciALT, PlotciASC, PlotciATW, PlotciAWD, ciAAS, ciALR, ciALT, ciASC, ciATW, ciAWD

Examples

Run this code
n=5; alp=0.05;h=2
ciAAll(n,alp,h)

Run the code above in your browser using DataLab