Learn R Programming

qtl (version 1.39-5)

mqmpermutation: Estimate QTL LOD score significance using permutations or simulations

Description

Two randomization approaches to obtain estimates of QTL significance:
  • Random redistribution of traits (method='permutation')
  • Random redistribution of simulated trait values (method='simulation')

Calculations can be parallelized using the SNOW package.

Usage

mqmpermutation(cross, scanfunction=scanone, pheno.col=1, multicore=TRUE, n.perm=10, batchsize=10, file="MQM_output.txt", n.cluster=1, method=c("permutation","simulation"), cofactors=NULL, plot=FALSE, verbose=FALSE, ...)

Arguments

cross
An object of class cross. See read.cross for details.
scanfunction
Function to use when mappingQTL's (either scanone,cim or mqm)
pheno.col
Column number in the phenotype matrix which should be used as the phenotype. This can be a vector of integers.
multicore
Use multicore (if available)
n.perm
Number of permutations to perform (DEFAULT=10, should be 1000, or higher, for publications)
batchsize
Batch size. The entire set is split in jobs. Each job contains b.size number of traits per job
file
Name of the intermediate output file used
n.cluster
Number of child processes to split the job into
method
What kind permutation should occur: permutation or simulation
cofactors
cofactors, only used when scanfunction is mqm. List of cofactors to be analysed in the QTL model. To set cofactors use mqmautocofactors or mqmsetcofactors
plot
If TRUE, make a plot
verbose
If TRUE, print tracing information
...
Parameters passed through to the scanone, cim or mqmscan functions

Value

Returns a mqmmulti object. this object is a list of scanone objects that can be plotted using plot.scanone(result[[trait]])

Details

Analysis of scanone, cim or mqmscan to scan for QTL in shuffled/randomized data. It is recommended to also install the snow library. The snow library allows calculations to run on multiple cores or even scale it up to an entire cluster, thus speeding up calculation.

References

  • Bruno M. Tesson, Ritsert C. Jansen (2009) Chapter 3.7. Determining the significance threshold eQTL Analysis in Mice and Rats 1, 20--25
  • Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963--971.

  • Rossini, A., Tierney, L., and Li, N. (2003), Simple parallel statistical computing. R. UW Biostatistics working paper series University of Washington. 193
  • Tierney, L., Rossini, A., Li, N., and Sevcikova, H. (2004), The snow Package: Simple Network of Workstations. Version 0.2-1.

See Also

Examples

Run this code
# Use the multitrait dataset
data(multitrait)



multitrait <- calc.genoprob(multitrait)
result <- mqmpermutation(multitrait,pheno.col=7, n.perm=2, batchsize=2)

## Not run: #Set 50 cofactors
# cof <- mqmautocofactors(multitrait,50)
# ## End(Not run)

multitrait <- fill.geno(multitrait)
result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
                         pheno.col=7, n.perm=2,batchsize=2,verbose=FALSE)

#Create a permutation object
f2perm <- mqmprocesspermutation(result)

#Get Significant LOD thresholds
summary(f2perm)

Run the code above in your browser using DataLab