# NOT RUN {
data(credit_data)
# If the test passes, `new_data` is returned unaltered
recipe(credit_data) %>%
check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)
# If `new_data` contains values not in `x` at the `prep()` function,
# the `bake()` function will break.
# }
# NOT RUN {
recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%
check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)
# }
# NOT RUN {
# By default missing values are ignored, so this passes.
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
check_new_values(Home) %>%
prep() %>%
bake(credit_data)
# Use `ignore_NA = FALSE` if you consider missing values as a value,
# that should not occur when not observed in the train set.
# }
# NOT RUN {
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
check_new_values(Home, ignore_NA = FALSE) %>%
prep() %>%
bake(credit_data)
# }
Run the code above in your browser using DataLab