Learn R Programming

⚠️There's a newer version (1.1.0) of this package.Take me there.

recipes (version 0.1.7)

Preprocessing Tools to Create Design Matrices

Description

An extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.

Copy Link

Version

Install

install.packages('recipes')

Monthly Downloads

173,696

Version

0.1.7

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

September 15th, 2019

Functions in recipes (0.1.7)

formula.recipe

Create a Formula from a Prepared Recipe
has_role

Role Selection
yj_trans

Internal Functions
juice

Extract Finalized Training Set
recipe

Create a Recipe for Preprocessing Data
prep

Train a Data Recipe
detect_step

Detect if a particular step or check is used in a recipe
prepper

Wrapper function for preparing recipes within resampling
discretize

Discretize Numeric Variables
step_bs

B-Spline Basis Functions
step_bin2factor

Create a Factors from A Dummy Variable
fully_trained

Check to see if a recipe is trained/prepared
step_YeoJohnson

Yeo-Johnson Transformation
step_BoxCox

Box-Cox Transformation for Non-Negative Data
covers

Raw Cover Type Data
recipes

recipes: A package for computing and preprocessing design matrices.
step_dummy

Dummy Variables Creation
step_discretize

Discretize Numeric Variables
step_inverse

Inverse Transformation
step_invlogit

Inverse Logit Transformation
step_downsample

Down-Sample a Data Set Based on a Factor Variable
check_type

Quantitatively check on variables
credit_data

Credit Data
names0

Naming Tools
recipes_pkg_check

Update packages
step_factor2string

Convert Factors to Strings
selections

Methods for Select Variables in Step Functions
step

step sets the class of the step and check is for checks.
step_kpca_rbf

Radial Basis Function Kernel PCA Signal Extraction
step_lag

Create a lagged predictor
step_holiday

Holiday Feature Generator
step_hyperbolic

Hyperbolic Transformations
okc

OkCupid Data
step_count

Create Counts of Patterns using Regular Expressions
step_logit

Logit Transformation
step_corr

High Correlation Filter
step_interact

Create Interaction Variables
print.recipe

Print a Recipe
step_intercept

Add intercept (or constant) column
step_kpca_poly

Polynomial Kernel PCA Signal Extraction
step_kpca

Kernel PCA Signal Extraction
fixed

Helper Functions for Profile Data Sets
format_ch_vec

Helpers for printing step functions
step_range

Scaling Numeric Data to a Specific Range
step_nnmf

NNMF Signal Extraction
step_modeimpute

Impute Nominal Data Using the Most Common Value
step_normalize

Center and scale numeric data
step_lowerimpute

Impute Numeric Data Below the Threshold of Measurement
rand_id

Make a random identification field for steps
step_arrange

Sort rows using dplyr
step_num2factor

Convert Numbers to Factors
step_nzv

Near-Zero Variance Filter
step_mutate

Add new variables using mutate
step_poly

Orthogonal Polynomial Basis Functions
step_filter

Filter rows using dplyr
step_profile

Create a Profiling Version of a Data Set
step_bagimpute

Imputation via Bagged Trees
step_center

Centering numeric data
step_classdist

Distances to Class Centroids
step_rename

Rename variables by name
step_shuffle

Shuffle Variables
step_rename_at

Rename multiple columns
step_integer

Convert values to predefined integers
step_ns

Nature Spline Basis Functions
step_novel

Simple Value Assignments for Novel Factor Levels
step_ica

ICA Signal Extraction
step_isomap

Isomap Embedding
step_geodist

Distance between two locations
step_rm

General Variable Filter
step_ratio

Ratio Variable Creation
step_rollimpute

Impute Numeric Data Using a Rolling Window Statistic
step_window

Moving Window Functions
step_slice

Filter rows by position using dplyr
step_zv

Zero Variance Filter
step_spatialsign

Spatial Sign Preprocessing
step_ordinalscore

Convert Ordinal Factors to Numeric Scores
step_knnimpute

Imputation via K-Nearest Neighbors
reexports

Objects exported from other packages
step_other

Collapse Some Categorical Levels
step_sqrt

Square Root Transformation
step_unknown

Assign missing categories to "unknown"
update.step

Update a recipe step
step_relu

Apply (Smoothed) Rectified Linear Transformation
step_regex

Create Dummy Variables using Regular Expressions
step_string2factor

Convert Strings to Factors
step_scale

Scaling Numeric Data
step_medianimpute

Impute Numeric Data Using the Median
step_meanimpute

Impute Numeric Data Using the Mean
step_unorder

Convert Ordered Factors to Unordered Factors
step_sample

Sample rows using dplyr
roles

Manually Alter Roles
tidy.recipe

Tidy the Result of a Recipe
tunable.step_bagimpute

tunable methods for recipes
step_upsample

Up-Sample a Data Set Based on a Factor Variable
step_lincomb

Linear Combination Filter
step_mutate_at

Mutate multiple columns
step_date

Date Feature Generator
step_depth

Data Depths
step_log

Logarithmic Transformation
step_naomit

Remove observations with missing values
step_pca

PCA Signal Extraction
step_pls

Partial Least Squares Feature Extraction
summary.recipe

Summarize a Recipe
terms_select

Select Terms in a Step Function.
check_range

Check Range Consistency
check_name

check that newly created variable names don't overlap
check_cols

Check if all Columns are Present
check_missing

Check for Missing Values
bake

Apply a Trained Data Recipe
Smithsonian

Smithsonian Museums
check_new_values

Check for Missing Values
add_step

Add a New Operation to the Current Recipe
biomass

Biomass Data