Learn R Programming

recipes (version 0.1.7)

step_arrange: Sort rows using dplyr

Description

step_arrange creates a specification of a recipe step that will sort rows using dplyr::arrange().

Usage

step_arrange(recipe, ..., role = NA, trained = FALSE, inputs = NULL,
  skip = FALSE, id = rand_id("arrange"))

# S3 method for step_arrange tidy(x, ...)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

Comma separated list of unquoted variable names. Use desc()`` to sort a variable in descending order. See [dplyr::arrange()] for more details. For the tidy` method, these are not currently used.

role

Not used by this step since no new variables are created.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

inputs

Quosure of values given by ....

skip

A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations

id

A character string that is unique to this step to identify it.

x

A step_arrange object

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms which contains the sorting variable(s) or expression(s). The expressions are text representations and are not parsable.

Details

When an object in the user's global environment is referenced in the expression defining the new variable(s), it is a good idea to use quasiquotation (e.g. !!!) to embed the value of the object in the expression (to be portable between sessions). See the examples.

Examples

Run this code
# NOT RUN {
rec <- recipe( ~ ., data = iris) %>%
  step_arrange(desc(Sepal.Length), 1/Petal.Length)

prepped <- prep(rec, training = iris %>% slice(1:75), retain = TRUE)
tidy(prepped, number = 1)

library(dplyr)

dplyr_train <-
  iris %>%
  as_tibble() %>%
  slice(1:75) %>%
  dplyr::arrange(desc(Sepal.Length), 1/Petal.Length)

rec_train <- juice(prepped)
all.equal(dplyr_train, rec_train)

dplyr_test <-
  iris %>%
  as_tibble() %>%
  slice(76:150) %>%
  dplyr::arrange(desc(Sepal.Length), 1/Petal.Length)
rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

# When you have variables/expressions, you can create a
# list of symbols with `rlang::syms()`` and splice them in
# the call with `!!!`. See https://tidyeval.tidyverse.org

sort_vars <- c("Sepal.Length", "Petal.Length")

qq_rec <-
  recipe( ~ ., data = iris) %>%
  # Embed the `values` object in the call using !!!
  step_arrange(!!!syms(sort_vars)) %>%
  prep(training = iris)

tidy(qq_rec, number = 1)
# }

Run the code above in your browser using DataLab