Learn R Programming

reglogit (version 1.2-7)

Simulation-Based Regularized Logistic Regression

Description

Regularized (polychotomous) logistic regression by Gibbs sampling. The package implements subtly different MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the desired estimator (regularized maximum likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a unified interface. For details, see Gramacy & Polson (2012 ).

Copy Link

Version

Install

install.packages('reglogit')

Monthly Downloads

216

Version

1.2-7

License

LGPL

Maintainer

Last Published

April 25th, 2023

Functions in reglogit (1.2-7)

reglogit-internal

Internal reglogit Functions
pima

Pima Indian Data
reglogit

Gibbs sampling for regularized logistic regression
predict.reglogit

Prediction for regularized (polychotomous) logistic regression models