Learn R Programming

rnaseqcomp (version 1.0.0)

plotMAD: Plots of Median Absolute Deviation

Description

For each pipeline, two quantification replicates are compared and log scale absolute deviations of signals are calculated. Then, loess smooth on absolute deviation are plotted stratified by detrended log signals.

Usage

plotMAD(dat, type = "l", lwd = 2, col = NULL, lty = 1, xlim = NULL, ylim = NULL, cex.leg = 0.6, xlab = "Detrended logSignal", ylab = "MAD", ...)

Arguments

dat
A rnaseqcomp S4 class object.
type
Plot types (default: 'l').
lwd
Plot line weights (default: 2).
col
Plot colors (default: NULL, colors are assigned by package RColorBrewer).
lty
Plot line styles (default: 1).
xlim
Plot limits of x-axis (default: NULL, limits are estimated automatically).
ylim
Plot limits of y-axis (default: NULL, limits are estimated automatically).
cex.leg
Legend size (default: 0.6).
xlab
Plot label of x-axis (default: 'Detrended logSignal').
ylab
Plot label of y-axis (default: 'MAD').
...
Other parameters for base function plot.

Value

MAD plot
MAD plots for all the quantification pipelines.
MAD
A numeric vector of median absolute deviations.

Examples

Run this code
data(encodeCells)
evaluationFeature <- encodeCells$genemeta$type == "protein_coding"
calibrationFeature <- encodeCells$genemeta$housekeeping
unitReference <- grepl("Cufflinks",encodeCells$repInfo)
dat <- matrixFilter(encodeCells$gm12878,encodeCells$repInfo,
    evaluationFeature,calibrationFeature,unitReference)
plotMAD(dat)

Run the code above in your browser using DataLab