Learn R Programming

rtemis (version 0.79)

mediboost: MediBoost

Description

Trains a binary decision tree classifier using MediBoost Tree-Structured Boosting

Usage

mediboost(x, y, catPredictors = NULL, depthLimit = 8,
  learningRate = 1, gamma = 0, update = "exponential",
  min.update = ifelse(update == "polynomial", 10, 1000),
  weights = NULL, autoweights = FALSE, min.hessian = 0.01,
  min.membership = 0, steps.past.min.membership = 2,
  save.rpart = FALSE, verbose = TRUE, trace = 1)

Arguments

x

Matrix / Data frame of features

y

Integer -1, 1: Vector of binary outcomes

catPredictors

Optional: Logical vector indicating categorical features

depthLimit

Integer: Maximum depth of tree to grow

learningRate

learning rate for the Newton Raphson step that updates the function values of the node for update = "exponential"

gamma

Float (0, 1): Accelaration factor

update

String: "Exponential" or "Polynomial"

verbose

Logical: If TRUE, print messages to output

Details

Outcome must be factor with two levels, the first level is the 'positive' class

lambda <- gamma/(1 - gamma)

References

Valdes Gilmer, Luna Jose, Eaton Eric, Ungar Lyle, Simone Charles and Solberg Timothy. MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine.