Learn R Programming

rtemis Machine Learning and Visualization

A platform for advanced Machine Learning research and applications.
The goal of rtemis is to make data science efficient and accessible with no compromise on flexibility.

Online Documentation and vignettes

Installation

See here for more setup and installation instructions.

install.packages("remotes")
remotes::install_github("egenn/rtemis")

10-second intro to rtemis

Install dependencies if they are not already installed:

packages <- c("pbapply", "ranger")
.add <- !packages %in% installed.packages()
install.packages(packages[.add])

Load rtemis and get cross-validated random forest performance on the iris dataset:

library(rtemis)
mod <- elevate(iris)
mod$plot()

What's new

  • v. 0.78: First public release, April 2019

Features

  • Visualization
    • Static: mplot3 family (base graphics)
    • Dynamic: dplot3 family (plotly)
  • Unsupervised Learning
    • Clustering: u.*
    • Decomposition: d.*
  • Supervised Learning
    • Classification, Regression, Survival Analysis: s.*
  • Cross-Decomposition
    • Sparse Canonical Correlation / Sparse Decomposition: x.*
  • Meta-Models
    [Have been temporarily removed for updating]
    • Model Stacking: metaMod()
    • Modality Stacking: metaFeat()
    • Group-weighted Stacking: metaGroup()

Ongoing work

  • Novel algorithms developed in rtemis will generally be added to this public repository as soon as the corresponding papers or preprints are published.
  • R Documentation is ongoing and should be completed soon.
  • rtemis is under active development with many enhancements and extensions in the works


2019 Efstathios D. Gennatas

Copy Link

Version

Version

0.79

License

GPL (>=3)

Maintainer

Efstathios D. Gennatas

Last Published

May 21st, 2021

Functions in rtemis (0.79)

addTree

rtemis internal: Recursive function to build Additive Tree
as.boost

addtreenow

rtemis internal: Low-level Additive Tree procedure
as.addtboost2

as.cartLiteBoostTV

as.addtboost

anyConstant

Check for constant columns
addtboost

rtemis internal: Gradient Boosting of Additive Trees
as.cartLinBoostTV

as.data.tree.rpart

Convert rpart rules to data.tree object
as.glmLiteBoostTV

bacc

Balanced Accuracy
colorAdjust

Adjust HSV Color
auc_pairs

Area under the Curve by pairwise concordance
cartLite

Bare bones decision tree derived from rpart
colMax

Collapse data.frame to vector by getting column max
cartLiteBoostTV

Boost an rtemis learner for regression
checkData

Check Data
auc

Area under the ROC Curve
cc

Concatenate Vectors
bootstrap

Bootstrap Resampling
boost

Boost an rtemis learner for regression
bag

Bag an rtemis learner for regression or classification [C, R]
boxcat

Box cat
cartLinBoostTV

Boost an rtemis learner for regression
clust

Clustering with rtemis
d.NMF

Non-negative Matrix Factorization (NMF)
classImbalance

Class Imbalance
colorGrad

Color Gradient
colorGrad.x

Color gradient for continuous variable
d.PCA

Principal Component Analysis
d.CUR

CUR Decomposition
crules

Combine rules
depCheck

rtemis internal: Dependencies check
ddSci

Format Numbers for Printing
desaturate

Pastelify a color (make a color more pastel)
decom

Matrix Decomposition with rtemis
drange

Set Dynamic Range
d.SPCA

Sparse Principal Component Analysis
eightBall

Magic 8-Ball
d.SVD

Singular Value Decomposition
d.H2OAE

Autoencoder using H2O
coef.addTree

Extract coefficients from Additive Tree leaves
colorMix

Create an alternating sequence of graded colors
clustSelect

Select rtemis Clusterer
betas.addTree

Extract coefficients from Additive Tree leaves
cube

Cube
d.H2OGLRM

Generalized Low-Rank Models (GLRM) on H2O
d.ICA

Independent Component Analysis
errorSummary

rtemis-internals: errorSummary
expand.glmLiteBoostTV

Expand boosting series
expand.cartLiteBoostTV

Expand boosting series
dat2bsplinemat

B-Spline matrix from dataset
expand.addtboost

Expand boosting series
distillTreeRules

Distill rules from trained RF and GBM learners
dat2poly

Create n-degree polynomial from data frame
elevate

Tune, Train, and Test an rtemis Learner by Nested Resampling
mse

Error functions
dplot3

Dynamic Plots (plotly)
formatRules

Format rules
gridCheck

rtemis internal: Grid check
gridSearchLearn

rtemis internal: Grid Search for Hyperparameter Tuning of rtemis Learners
invlogit

Inverse Logit
fwhm2sigma

FWHM to Sigma
factoryze

Factor Analysis
learn

Supervised Learning with rtemis
intro

rtemis-internals: intro
factorHarmonize

Factor harmonize
ifNotNull

Say No to NULL
labels2nii

Write Data to a Nifti File
is.constant

Check if vector is constant
likelihoodMediboostChooseFeat

rtemis internal: likelihoodMediboostChooseFeat Selects a feature with maximum information gain and provides the decision values and column index for the chosen feature
colorOp

Simple Color Operations
checkpoint.earlyStopping

Early stopping checkpoint
loocv

Leave-one-out Resampling
lotri2edgeList

Connectivity Matrix to Edge List
mplot3.confbin

Plot extended confusion matrix for binary classification
massUni

Mass-univariate Analysis
matchCasesByRules

Match Rules to Cases
mplot3.decision

mplot3: Decision boundaries
likelihoodMediboostSplitNode

rtemis internal: likelihoodMediboostSplitNode
modSelect

Select rtemis Learner
modError

Error Metrics for Supervised Learning
mplot3.box

mplot3: Boxplot
mplot3.bar

mplot3: Barplot
getMode

Get the mode of a factor or integer
d.LLE

Locally Linear Embedding
d.MDS

Multidimensional Scaling
dplot3.heatmap

Dynamic Heatmap
dataPrepare

rtemis-internals: dataPrepare
dplot3.varimp

Plot variable importance using plotly
dataSummary

rtemis-internals: dataSummary
logit

Logit transform
is.discrete

Check if variable is discrete (factor or integer)
kfold

K-fold Resampling
getName

rtemis internal: Get Variable Name from Arguments
mplot3.x

mplot3: Univariate plots: index, histogram, density, QQ-line
logloss

Log Loss for a binary classifier
glmLiteBoostTV

Boost an rtemis learner for regression
gp

Bayesian Gaussian Processes [R]
labelify

Convert text for label printing
mhist

Histograms
mplot3.adsr

mplot3: ADSR Plot
mediboost

MediBoost
mplot3.surv

mplot3: Survival Plots
mplot3.addtree

mplot3 ADDTREE trees
classError

Classification Error
mplot3.img

mplot3: Image (False color 2D)
colorPreview

Color Preview
mplot3.xy

mplot3: XY Scatter and line plots
labels2niftis

Write Matrix to Multiple Nifti Files
mplot3.xym

mplot3 Scatter plot with marginal density and/or histogram
msg

Message with provenance
predict.boost

Predict method for boost object
mplot3.prp

Plot CART Decision Tree
d.ISOMAP

Isomap
cols2list

Convert data frame columns to list elements
d.KPCA

Kernel Principal Component Analysis
predict.cartLinBoostTV

Predict method for cartLinBoostTV object
print.addTree

Print method for addTree object
mplot3.varimp

mplot3: Variable Importance
d.TSNE

t-distributed Stochastic Neighbor Embedding
decomSelect

Select rtemis Decomposer
delayTime

Delay and Reverb Time Calculator
d.UMAP

Uniform Manifold Approximation and Projection
expand.cartLinBoostTV

Expand boosting series
getTerms

Get terms of a formula
expand.boost

Expand boosting series
partLin

rtemis internal: Ridge and Stump
penn.heat

Create a color gradient
partLm

rtemis internal: Ridge and Stump
glmLite

Bare bones decision tree derived from rpart
gridSummary

rtemis-internals: gridSummary
mplot3.roc

mplot3 ROC curves
mplot3.res

mplot3 Plot resample
print.addtboost

predict.addTreeRaw

Predict method for addTreeLite object
predict.addtboost

Predict method for addtboost object
plot.resample

plot method for resample object
gtTable

Greater-than Table
print.cartLinBoostTV

rt.letters

Construct an n-length vector of letters
rsq

R-squared
print.boost

rtRandom

Random rtemis art
predict.rtTLS

predict.rtTLS: predict method for rtTLS object
rtSave

Write rtemis model to RDS file
rtXDecom-class

R6 class for rtemis cross-decompositions
mplot.hsv

Plot HSV color range
s.DA

Linear and Quadratic Discriminant Analysis [C]
predict.rtBSplines

Predict S3 method for rtBSplines
massCART

Mass-univariate CART prediction and variable importance
lincoef

Linear Model Coefficients
logistic

Logistic function
massGAM

Mass-univariate GAM Analysis
printdf

Print data frame
print.survError

Print survError object
prune.addtree

Prune ADDTREE tree
preorderTree.addtree

rtemis-internal Traverse ADDTREE tree by preorder
preprocess

Data preprocessing
oneHot

One hot encoding
mplot3

rtemis static plotting
mplot3.cart

mplot3: data.tree trees
mplot3.conf

Plot confusion matrix
mplot3.harmonograph

Plot a harmonograph
predict.nullmod

rtemis internal: predict for an object of class nullmod
outro

rtemis-internals: outro
predict.nlareg

Predict method for nlareg object
print.regError

Print regError object
print.resample

predict.ruleFeat

predict method for ruleFeat object
s.DN

Artificial Neural Network [C, R]
relu

ReLU - Rectified Linear Unit
mplot3.fret

mplot3: Guitar Fretboard
mplot3.fit

mplot3: True vs. Fitted plot
mplot3.heatmap

mplot3 Heatmap (image; modified heatmap)
prune.rpart.rt

prune.rpart experimental replacement
rfVarSelect

Variable Selection by Random Forest
rnormmat

Random Normal Matrix
rtMeta-class

rtemis Meta Model Class
rtMeta-methods

rtMeta S3 methods
s.ET

ExtraTrees [C, R]
s.EVTREE

Evolutionary Learning of Globally Optimal Trees [C, R]
resLearn

rtemis internal: Resample Learn
rowMax

Collapse data.frame to vector by getting row max
nCr

n Choose r
resample

Resampling methods
plotly.heat

Heatmap with plotly
nlareg

rtemis internal: NonLinear Activation regression (NLAreg)
predict.glmLite

Predict method for glmLite object
predict.addTree

Predict method for addTree object
print.cartLiteBoostTV

predict.glmLiteBoostTV

Predict method for glmLiteBoostTV object
print.classError

s.LOGISTIC

Logistic Regression
s.LOESS

Local Polynomial Regression (LOESS) [R]
s.H2OGBM

Gradient Boosting Machine on H2O [C, R]
p.MXINCEPTION

Classify Images using pre-trained Inception network with mxnet [C]
rsd

Coefficient of Variation (Relative standard deviation)
rtModBag-methods

rtModBag S3 methods
rtModBag-class

rtemis Bagged Supervised Model Class
psd

Population Standard Deviation
rtModCV-class

rtemis Cross-Validated Supervised Model Class
reverseLevels

Reverse factor levels
rtModCV-methods

S3 methods for rtModCV class that differ from those of the rtMod superclass
rtModLog-class

rtemis Supervised Model Log Class
reduceList

Reduce List to one value per element
s.H2ORF

Random Forest on H2O [C, R]
s.NW

Nadaraya-Watson kernel regression [R]
s.NLS

Nonlinear Least Squares (NLS) [R]
rtModLogger

rtemis model logger
s.CTREE

Conditional Inference Trees [C, R, S]
s.GLMNET

GLM with Elastic Net Regularization [C, R, S]
runifmat

Random Uniform Matrix
rules2medmod

rtemis-internals: Convert rules from cutoffs to median/mode and range
s.GLM

Generalized Linear Model [C, R]
s.CART

Classification and Regression Trees [C, R, S]
s.MULTINOM

Multinomial Logistic Regression
s.MXN

Neural Network with mxnet [C, R]
rtPalettes

rtemis Color Palettes
rtROC

Build an ROC curve
s.RANGER

Random Forest Classification and Regression [C, R]
s.QRNN

Quantile Regression Neural Network [R]
rtModCVclass-class

rtemis Cross-Validated Classification Model Class
rtlayout

Layout for plotting on multiple panels
rtModLite-class

rtemis Lite Supervised Model Class
rtClust-class

R6 class for rtemis clustering
rtModClass

rtemis Classification Model Class
rtClust-methods

rtClust S3 methods
rtModLite-methods

rtModLite S3 methods
s.IRF

Iterative Random Forest [C, R]
parameterSummary

rtemis-internals: parameterSummary
rt_lle_calc_k

rtemis internal: lle::calc_k function adapted to work with pbapply
rtset

rtemis default-setting functions
print.glmLiteBoostTV

print.gridSearch

print method for gridSearch object
predict.cartLiteBoostTV

Predict method for cartLiteBoostTV object
predict.cartLite

Predict method for cartLite object
printls

Pretty print list
printdf1

Print 1 x N data frame
rtDecomLearn-class

R6 class for rtemis decomLearn
rtDecom-class

R6 Class for rtemis Decompositions
rtMod-class

rtemis Supervised Model Class
rtemis-package

rtemis: Machine Learning and Visualization
s.XGBLIN

s.BRUTO

Projection Pursuit Regression (BRUTO) [R]
s.GAM.formula

Generalized Additive Model (GAM) C, R
s.MARS

Multivariate adaptive regression splines (MARS) [C, R]
s.SGD

Stochastic Gradient Descent (SGD) [C, R]
s.RF

Random Forest Classification and Regression [C, R]
s.C50

C5.0 Decision Trees and Rule-Based Models [C]
s.MLRF

Spark MLlib Random Forest [C, R]
s.RFSRC

Random Forest for Classification, Regression, and Survival [C, R, S]
s.GAMSEL

Regularized Generalized Additive Model (GAMSEL) [C, R]
s.SPLS

Sparse Partial Least Squares Regression [C, R]
save.rds

Write data to RDS file
typeset

Set type of columns
square

Square
rtModSet

rtemis model
s.ADABOOST

Adaboost Binary Classifier [C]
rtMod-methods

rtMod S3 methods
rtPalette

rtemis Color Palettes
s.ADDTBOOST

Boosting of Additive Trees [R]
s.ADDT

Additive Tree with Linear Nodes [R]
s.ADDTREE

Additive Tree: Tree-Structured Boosting [C]
s.GBM

Gradient Boosting Machine [C, R, S]
s.BART

Bayesian Additive Regression Trees [C, R]
s.TLS

Total Least Squares Regression [R]
s.BAYESGLM

Bayesian GLM
u.PAM

Partitioning Around Medoids
strict

Strict assignment by class or type
specificity

Specificity
x.CCA.permute

modified PMA::CCA.permute for parallel execution
svd1

rtemis-internals Project Variables to First Eigenvector
u.PAMK

Partitioning Around Medoids with k Estimation
s.XGB

XGboost Classification and Regression [C, R]
sparsify

Sparsify a vector
u.CMEANS

Fuzzy C-means Clustering
s.KNN

k-Nearest Neighbors Classification and Regression [C, R]
s.GBM3

Gradient Boosting Machine [C, R, S]
x.CCA.permute.both

modified PMA:::CCA.permute.both for parallel execution
u.HOPACH

Hieararchical Ordered Partitioning and Collapsing Hybrid
xdecomSelect

Select rtemis cross-decomposer
x.SD2RES

Sparse CCA with Initialization By Resampling
u.HARDCL

Clustering by Hard Competitive Learning
s.GLS

Generalized Least Squares [R]
s.POLY

Polynomial Regression
s.PPR

Projection Pursuit Regression (PPR) [R]
s.H2ODL

Deep Learning on H2O [C, R]
s.POLYMARS

Multivariate adaptive polynomial spline regression (POLYMARS) [C, R]
s.PPTREE

Projection Pursuit Tree Classification [C]
s.PSURV

Parametric Survival Regression [S]
size

Size of matrix or vector
s.QDA

Quadratic Discriminant Analysis
s.RLM

Robust linear model
s.NBAYES

Naive Bayes Classifier [C]
s.GAM

Generalized Additive Model (GAM) C, R
s.LDA

Linear Discriminant Analysis
s.LM

Linear model
s.NLA

NonLinear Activation unit Regression (NLA) [R]
s.GAM.default

Generalized Additive Model (GAM) [C, R]
se

Extract standard error of fit from rtemis model
sensitivity

Sensitivity
softmax

Softmax function
stderror

Standard Error of the Mean
softplus

Softplus function
s.RULEFEAT

ruleFeat [C, R]
s.TFN

Neural Network with tensorflow [C, R]
sigmoid

Sigmoid function
seql

Sequence generation with automatic cycling
s.SVM

Support Vector Machines [C, R]
strat.sub

Resample using Stratified Subsamples
u.SPEC

Spectral Clustering
strat.boot

Stratified Bootstrap Resampling
update.addtboost

Update boost object's fitted values
update.glmLiteBoostTV

update.rtMod.boost

rtemis internals: Update rtMod boost object's fitted values in-place
update.cartLinBoostTV

u.EMC

Expectation Maximization Clustering
u.H2OKMEANS

K-Means Clustering on H2O
update.cartLiteBoostTV

sparseVectorSummary

Sparseness and pairwise correlation of vectors
synthRegData

Synthesize Simple Regression Data
u.KMEANS

K-means Clustering
timeProc

Time a process
u.NGAS

Neural Gas Clustering
varSelect

Variable Selection by Variable Importace
x.CCA

Sparse Canonical Correlation Analysis (CCA)