mplot3
ROC curvesPlot ROC curve for a binary classifier
mplot3.roc(prob, labels, method = c("rt", "pROC"), type = "TPR.FPR",
balanced.accuracy = FALSE, main = "", col = ucsfPalette,
cex = 1.2, lwd = 2.5, diagonal = TRUE, diagonal.lwd = 2.5,
diagonal.lty = 1, group.legend = FALSE, annotation = TRUE,
annotation.col = col, annot.line = NULL, annot.adj = 1,
annot.font = 1, mar = c(2.5, 3, 2.5, 1),
theme = getOption("rt.theme", "lightgrid"), par.reset = TRUE,
filename = NULL, pdf.width = 5, pdf.height = 5, ...)
Vector, Float [0, 1]: Predicted probabilities (i.e. c(.1, .8, .2, .9))
Vector, Integer 0, 1: True labels (i.e. c(0, 1, 0, 1))
String: "rt" or "pROC" will use rtROC and pROC::roc
respectively
to get points of the ROC. Default = "rt"
String: "TPR.FPR" or "Sens.Spec". Only changes the x and y labels. True positive rate vs. False positive rate and Sensitivity vs. Specificity. Default = "TPR.FPR"
Logical: If TRUE, annotate the point of maximal Balanced Accuracy. Default = FALSE
String: Plot title. Default = ""
Color, vector: Colors to use for ROC curve(s)
Float: Character expansion factor. Default = 1.2
Float: Line width. Default = 2.5
Logical: If TRUE, draw diagonal. Default = TRUE
Float: Line width for diagonal. Default = 2.5
Integer: Line type for diagonal. Default = 1
Logical
Additional parameters to pass to mplot3.xy