Learn R Programming

seqMeta (version 1.6.7)

singlesnpMeta: Meta analyze single snp effects from multiple studies

Description

Takes as input `seqMeta` objects (from the prepScores function), and meta analyzes them.

Usage

singlesnpMeta(..., SNPInfo = NULL, snpNames = "Name", aggregateBy = "gene", studyBetas = TRUE, verbose = FALSE)

Arguments

...
seqMeta objects
SNPInfo
The SNP Info file. This should contain the fields listed in snpNames and aggregateBy. Only SNPs in this table will be meta analyzed, so this may be used to restrict the analysis.
snpNames
The field of SNPInfo where the SNP identifiers are found. Default is 'Name'
aggregateBy
The field of SNPInfo on which the skat results were aggregated. Default is 'gene'. Though gene groupings are not explicitely required for single snp analysis, it is required to find where single snp information is stored in the seqMeta objects.
studyBetas
Whether or not to include study-level effects in the output.
verbose
logical. Whether progress bars should be printed.

Value

a data frame with the gene, snp name, meta analysis.

Details

This function meta analyzes score tests for single variant effects. Though the test is formally a score test, coefficients and standard errors are also returned, which can be interpreted as a `one-step` approximation to the maximum likelihood estimates.

References

Lin, DY and Zeng, D. On the relative efficiency of using summary statistics versus individual-level data in meta-analysis. Biometrika. 2010.

See Also

prepScores burdenMeta skatMeta skatOMeta

Examples

Run this code
###load example data for two studies:
### see ?seqMetaExample
data(seqMetaExample)

####run on each study:
cohort1 <- prepScores(Z=Z1, y~sex+bmi, SNPInfo = SNPInfo, data =pheno1)
cohort2 <- prepScores(Z=Z2, y~sex+bmi, SNPInfo = SNPInfo, data =pheno2)

#### combine results:
out <- singlesnpMeta(cohort1, cohort2, SNPInfo = SNPInfo)
head(out)

## Not run: 
# ##compare
# bigZ <- matrix(NA,2*n,nrow(SNPInfo))
# colnames(bigZ) <- SNPInfo$Name
# for(gene in unique(SNPInfo$gene)) {
#    snp.names <- SNPInfo$Name[SNPInfo$gene == gene]
#      bigZ[1:n,SNPInfo$gene == gene][, snp.names \%in\% colnames(Z1)] <- 
#              Z1[, na.omit(match(snp.names,colnames(Z1)))]
#      bigZ[(n+1):(2*n),SNPInfo$gene == gene][, snp.names \%in\% colnames(Z2)] <- 
#              Z2[, na.omit(match(snp.names,colnames(Z2)))]
# }
# 
# pheno <- rbind(pheno1[ ,c("y","sex","bmi")], pheno2[ , c("y","sex","bmi")])
# out3 <- apply(bigZ, 2, function(z) {
#          if(any(!is.na(z))) {
#            z[is.na(z)] <- mean(z,na.rm=TRUE)
#            mod <- lm(y ~ sex+bmi+c(rep(1,n),rep(0,n))+z, data=pheno)
#            beta <- mod$coef["z"]
#            se <- sqrt(vcov(mod)["z", "z"])
#            p <- pchisq( (beta/se)^2,df=1,lower=F)
#            return(c(beta,se,p))
#          } else {
#            return(c(0,Inf,1))
#          }
#  }) 
#  out3 <- t(out3[,match(out$Name,colnames(out3))])
#  
#  ##plot
#  par(mfrow=c(2,2))
#  plot(x=out3[,1],y=out$beta, xlab="complete data (Wald)", 
#       ylab="meta-analysis (Score)", main="coefficients"); abline(0,1)
#  plot(x=out3[,2],y=out$se, xlab="complete data (Wald)", 
#       ylab="meta-analysis (Score)", main="standard errors"); abline(0,1)
#  plot(x=out3[,3],y=out$p, xlab="complete data (Wald)", 
#       ylab="meta-analysis (Score)", main="p-values"); abline(0,1)
#  ## End(Not run)

Run the code above in your browser using DataLab