Learn R Programming

staRank (version 1.14.0)

summaryStats: Summary statistic per element

Description

Calculates the summary statistic per element for the whole dataset.

Arguments

data
a matrix with one row per element or a list containing one vector per element.
method
the score that is calculated per gene, one of 'mean' (default), 'median', 'mwtest' (two-sample one sided Mann-Whitney test), 'ttest'(two-sample one sided t-test), 'RSA' (redundant siRNA activity).
decreasing
a boolean indicating the direction of the ranking.

Value

a named vector of the scored elements.

Examples

Run this code
# generate dataset
d<-replicate(4,sample(1:10,10,replace=FALSE))
rownames(d)<-letters[1:10]

# rank aggregation on the dataset using two base methods
aggregRank(d, method='mean')
aggregRank(d, method='median')

# calculate summary statistic from the data
summaryStats(d, method='mean')
summaryStats(d, method='RSA')

# calculating replicate scores from different summary statistics
scores<-getSampleScores(d,'mean',decreasing=FALSE,bootstrap=TRUE)
scores<-getSampleScores(d,'mwtest',decreasing=FALSE,bootstrap=TRUE)

# perform RSA analysis

# get RSA format of data
rsaData<-dataFormatRSA(d)
# set RSA options
opts<-list(LB=min(d),UB=max(d),reverse=FALSE)
# run the RSA analysis
r<-runRSA(rsaData,opts)
# directly obtain the per gene RSA ranking from the data
r<-uniqueRSARanking(rsaData,opts)

# get stable Ranking, stable setsizes and the Pi matrix for default settings
# and stability threshold of 0.9
s<-getStability(d,0.9)

# run default stability ranking
s<-stabilityRanking(d)

# using an accessor function on the RankSummary object
stabRank(s)

# summarize a RankSummary object
summary(s)

# generate a rank matrix from a RankSummary object
getRankmatrix(s)

Run the code above in your browser using DataLab