Learn R Programming

R package streamMOA - Interface for MOA Stream Clustering Algorithms

Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework. This is an extension package for stream.

Installation

Stable CRAN version: Install from within R with

install.packages("streamMOA")

Current development version: Install from r-universe.

install.packages("streamMOA", repos = "https://mhahsler.r-universe.dev")

Example

Create 3 clusters with 5% noise.

library(streamMOA)

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

Cluster with CluStream.

clustream <- DSC_CluStream(m = 50, k = 3)
update(clustream, stream, 500)
clustream
## CluStream 
## Class: moa/clusterers/clustream/WithKmeans, DSC_MOA, DSC_Micro, DSC 
## Number of micro-clusters: 50 
## Number of macro-clusters: 3

Plot micro-clusters.

plot(clustream, stream)

Further Information

Copy Link

Version

Install

install.packages('streamMOA')

Monthly Downloads

694

Version

1.3-0

License

GPL-3

Maintainer

Michael Hahsler

Last Published

September 3rd, 2022

Functions in streamMOA (1.3-0)

DSD_RandomRBFGeneratorEvents

Random RBF Generator Events Data Stream Generator
streamMOA-package

streamMOA: Interface for MOA Stream Clustering Algorithms
DSC_MCOD

Micro-cluster Continuous Outlier Detector (MCOD)
DSC_DenStream

DenStream Data Stream Clusterer
DSC_BICO_MOA

BICO - Fast computation of k-means coresets in a data stream
DSC_StreamKM

streamKM++
DSClassifier_MOA

DSClassifier_MOA -- MOA-based Stream Classifiers
DSC_DStream_MOA

D-Stream Data Stream Clustering Algorithm
DSD_MOA

Base class for MOA-based Data Stream Generators
DSC_CluStream

CluStream Data Stream Clusterer
DSC_ClusTree

ClusTree Data Stream Clusterer
DSC_MOA

DSC_MOA Class