# NOT RUN {
# A PPR model and a GLM model with default parameters
model_specs(learner = c("bm_ppr", "bm_glm"), learner_pars = NULL)
# A PPR model and a SVR model. The listed parameters are combined
# with a cartesian product.
# With these specifications an ensemble with 6 predictive base
# models will be created. Two PPR models, one with 2 nterms
# and another with 4; and 4 SVR models, combining the kernel
# and C parameters.
specs <- model_specs(
c("bm_ppr", "bm_svr"),
list(bm_ppr = list(nterms = c(2, 4)),
bm_svr = list(kernel = c("vanilladot", "polydot"), C = c(1,5)))
)
# All parameters currently available (parameter values can differ)
model_specs(
learner = c("bm_ppr", "bm_svr", "bm_randomforest",
"bm_gaussianprocess", "bm_cubist", "bm_glm",
"bm_gbm", "bm_pls_pcr", "bm_ffnn", "bm_mars"
),
learner_pars = list(
bm_ppr = list(
nterms = c(2,4),
sm.method = "supsmu"
),
bm_svr = list(
kernel = "rbfdot",
C = c(1,5),
epsilon = .01
),
bm_glm = list(
alpha = c(1, 0)
),
bm_randomforest = list(
num.trees = 500
),
bm_gbm = list(
interaction.depth = 1,
shrinkage = c(.01, .005),
n.trees = c(100)
),
bm_mars = list(
nk = 15,
degree = 3,
thresh = .001
),
bm_ffnn = list(
size = 30,
decay = .01
),
bm_pls_pcr = list(
method = c("kernelpls", "simpls", "cppls")
),
bm_gaussianprocess = list(
kernel = "vanilladot",
tol = .01
),
bm_cubist = list(
committees = 50,
neighbors = 0
)
)
)
# }
Run the code above in your browser using DataLab