Learn R Programming

uGMAR (version 3.2.4)

isStationary_int: Check the stationarity and identification conditions of specified GMAR, StMAR, or G-StMAR model.

Description

isStationary_int checks the stationarity condition and isIdentifiable checks the identification condition of the specified GMAR, StMAR, or G-StMAR model.

Usage

isStationary_int(p, M, params, restricted = FALSE)

isIdentifiable( p, M, params, model = c("GMAR", "StMAR", "G-StMAR"), restricted = FALSE, constraints = NULL )

Arguments

p

a positive integer specifying the autoregressive order of the model.

M
For GMAR and StMAR models:

a positive integer specifying the number of mixture components.

For G-StMAR models:

a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is M=M1+M2.

params

a real valued parameter vector specifying the model.

For non-restricted models:

For GMAR model:

Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).

For StMAR model:

Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).

For G-StMAR model:

Size \((M(p+3)+M2-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M}\)).

For restricted models:

For GMAR model:

Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).

For StMAR model:

Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).

For G-StMAR model:

Size \((3M+M2+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{M1+1},...,\nu_{M})\).

Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight, and \(\nu\) a degrees of freedom parameter. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case M=1, the parameter \(\alpha\) is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).

restricted

a logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes.

model

is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

constraints

specifies linear constraints applied to the autoregressive parameters.

For non-restricted models:

a list of size \((pxq_{m})\) constraint matrices \(C_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(C_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

a size \((pxq)\) constraint matrix \(C\) of full column rank satisfying \(\phi\)\(=\)\(C\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).

Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns TRUE or FALSE accordingly.

Warning

These functions don't have any argument checks!

Details

isStationary_int does not support models imposing linear constraints. In order to use it for a model imposing linear constraints, one needs to expand the constraints first to obtain a nonconstrained parameters vector.

Note that isStationary_int returns FALSE for stationary parameter vectors if they are extremely close to the boundary of the stationarity region.

isIdentifiable checks that the regimes are sorted according to the mixing weight parameters and that there are no dublicate regimes.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.

  • Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].

  • Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].