mde.wrappednormal(x, bw, mu = NULL, rho = NULL, sd = NULL, alpha = NULL, p = 2, tol = 1e-05, n = 512, from = circular(0), to = circular(2 * pi), lower = NULL, upper = NULL, method = "L-BFGS-B", lower.rho = 1e-06, upper.rho = 1 - 1e-06, min.sd = 0.001, K = NULL, min.k = 10, control.circular = list(), ...)
"print"(x, digits = max(3, getOption("digits") - 3), ...)circular.rho is NULL. Default: maximum likelihood estimate.NULL overrides the value of p. See the next argument p. This is a different
parameterization, alpha=-1/2 provides Hellinger distance,
alpha=-1 provides Kullback-Leibler distance and alpha=-2
provides Neyman's Chi-Square distance.p=2 provides Hellinger distance, p=-1
provides Kullback-Leibler distance and p=Inf provides Neyman's
Chi-Square distance. It is ignored if alpha is not NULL.mle.wrappednormal.optim used to constrained optimization. First element for the mean direction, second element for the concentration.optim used to constrained optimization. First element for the mean direction, second element for the concentration.optim.lower is NULL this parameter is used to constrained optimization for the concentration parameter.upper is NULL this parameter is used to constrained optimization for the concentration parameter.sd parameter. This argument is passed to the function which determined the Maximum Likelihood estimates of the parameters. See mle.wrappednormal.mu)print.mde.wrappednormal.optim is used to performs minimization.circular, mle.wrappednormal and wle.wrappednormal.
set.seed(1234)
x <- c(rwrappednormal(n=200, mu=circular(0), sd=0.6),
rwrappednormal(n=20, mu=circular(pi/2), sd=0.1))
res <- mde.wrappednormal(x, bw=0.08, mu=circular(0), sd=0.6)
res
plot(circular(0), type='n', xlim=c(-1, 1.75), shrink=1.2)
lines(circular(res$x), res$y)
lines(circular(res$x), res$k, col=2)
legend(1,1.5, legend=c('estimated density', 'MDE'), lty=c(1, 1), col=c(1, 2))
Run the code above in your browser using DataLab