wle.normal is used to robust estimate the location and the scale parameters via Weighted Likelihood, when the sample is iid from a normal distribution with unknown mean and variance.
wle.normal(x, boot=30, group, num.sol=1, raf="HD", smooth=0.003, tol=10^(-6), equal=10^(-3), max.iter=500, verbose=FALSE)raf="HD": Hellinger Distance RAF,
raf="NED": Negative Exponential Disparity RAF,
raf="SCHI2": Symmetric Chi-Squared Disparity RAF.
tol).TRUE warnings are printed.wle.normal returns an object of class "wle.normal".Only print method is implemented for this class.The object returned by wle.normal are:max.iter iteration are reached.Markatou, M., Basu, A. and Lindsay, B.G., (1998) Weighted likelihood estimating equations with a bootstrap root search, Journal of the American Statistical Association, 93, 740-750.
Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.
library(wle)
data(cavendish)
result <- wle.normal(cavendish)
result
result <- wle.normal(cavendish,boot=20,num.sol=1)
barplot(result$weights,col=2,xlab="Observations",
ylab="Weights",ylim=c(0,1),
names.arg=seq(1:length(result$weights)))
Run the code above in your browser using DataLab