DiffusionMap(data, sigma = "local", k = find_dm_k(nrow(data) - 1L),
n_eigs = min(20L, nrow(data) - 2L), density_norm = TRUE, ...,
distance = c("euclidean", "cosine", "rankcor"), n_local = 5L,
censor_val = NULL, censor_range = NULL, missing_range = NULL,
vars = NULL, verbose = !is.null(censor_range), suppress_dpt = FALSE)
vars
to select specific columns other than the default: all double value columns'local'
, 'global'
, a (numeric) global sigma or a Sigmas object.
When choosing 'global'
, a global sigma will be calculated using find_sigmas
. (Optional. default: 'local'
)
A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrixfind_dm_k
).sigma == 'local'
, the n_local
th nearest neighbor determines the local sigma.DPT
in the returned object (default: FALSE)eigenvalues
eigenvectors
n_eigs
dimensionssigmas
data_env
eigenvec0
transitions
d
d_norm
k
n_local
n_local
th nearest neighbor is used to determine local kernel densitydensity_norm
distance
censor_val
censor_range
missing_range
vars
find_sigmas
to pre-calculate a fitting global sigma
parameterdata(guo)
DiffusionMap(guo)
DiffusionMap(guo, 13, censor_val = 15, censor_range = c(15, 40), verbose = TRUE)
Run the code above in your browser using DataLab